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Abstract

Traffic control in the Linux kernel offers a large
set of functions for classifying and scheduling
network traffic. Unfortunately, properly con-
figuring traffic control is complicated not only
by sometimes obscure underlying theoretical
concepts, but it is also made difficult by the
rather scary “tc” configuration language used
for this.

tcng aims to improve this situation. It de-
fines a new, much more human-friendly con-
figuration language, and provides a compiler
translating that to a set of lower-level lan-
guages, among them C and “t¢”. tcng also
comes with a simulator that uses the actual
kernel code to simulate the traffic control sub-
system.

1 Introduction

Traffic control is the set of mechanisms used
to condition network traffic, and their appli-
cation. Typical uses are to give some traffic
higher priority than other, to limit the rate
at which traffic is sent, or also to block unde-
sirable traffic. The latter example shows that
traffic control is in many ways related to fire-
walling, and that there are cases, where either
can partially perform tasks of the other.

When considering the packet processing
path shown in figure 1, traffic control is situ-
ated next to the network interfaces, at ingress
and at egress. At ingress, only a limited set of
functions can be performed, such as removal
of undesired packets, or preliminary classifica-
tion. At egress, the full range of traffic control
functions is available, including queuing.

In this paper, we briefly introduce the gen-
eral structure of Linux traffic control in section
2. We then discuss universal usability prob-
lems and shortcomings of the current configu-
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Figure 1: Packet processing in the Linux ker-
nel.

ration mechanism in section 3, and present a
new configuration system (tcng) that is built
on top of the existing one in section 4. In sec-
tion 5, we describe simulators used to test the
teng system, and how they can also be put
to interesting uses beyond traffic control. We
conclude with a discussion of shortcomings of
teng in section 6.

Configuration of current Linux traffic con-
trol is documented by the Linux Advanced
Routing and Traffic Control project [1]. A de-
tailed description of the internal structure of
traffic control in the Linux kernel can be found
in [2], and further material is available on [3].

tcng comes with extensive language and us-
age documentation. The tcng home page is at
http://tcng.sourceforge.net

This project started at the beginning of
2001 at EPFL ICA, continued until mid-2002
at Bivio Networks Inc., and has now become
one of the author’s spare time activities.



2 Linux traffic control

overview

The main elements of traffic control are classifi-
cation, scheduling, and queuing. Classification
looks at packet content or at other informa-
tion related to packets, and attributes them
to distinct classes. Packets are then put into
queues, and eventually scheduled for transmis-
sion. The class of a packet determines in which
queue the packet goes, and how it is scheduled.
Figure 2 illustrates this process.
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Figure 2: Traffic control functional structure.

Linux traffic control combines queuing and
scheduling into so-called “queuing disciplines”.
Queuing disciplines can be nested, e.g. a queu-
ing discipline implementing a priority sched-
uler can use queuing disciplines implementing
FIFOs!, for storing the packets.

The design of Linux traffic control is highly
modular, with a vast choice of queuing disci-
plines and classifiers.

Important queuing disciplines include

e the simple drop-tail FIFO?,

e a “Random Early Detection® (RED)
FIFO [4)3

o the “Token Bucket Filter” (TBF), a
shaper that emits packets at a fixed rate,

e 3 priority scheduler that emits packets in
higher priority classes before packets in
lower priority classes, and

1A FIFO stores and emits packets in the order in
which they arrive (“first-in first-out”).

2A drop-tail FIFO drops newly arriving packets
when it has reached its maximum size.

SRED starts dropping packets already before reach-
ing the maximum queue size, so that congestion-
controlled protocols like TCP can slow down in time.

e the “Hierarchical Token Bucket” that —
among other things — allows to assign a
certain percentage of the available band-
width to individual classes.

The most important classifier is called
“u32” and it can use any bit patterns in a
packet for classification. There are also a
few more specialized classifiers, e.g. ones that
re-use the results of previous routing or fire-
walling decisions.

Classification can also be combined with
metering. Metering alters the classification de-
cision, based on the rate at which packets ar-
rive. A typical use of metering is to limit the
rate of a flow by dropping packets if too many
of them arrive in a given time interval.
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Figure 3: OIld traffic control configuration.

As shown in figure 3, the traffic control com-
ponents in the kernel are configured from user
space with a program called “tc”, for “traffic
control”.

3 The problems

It is unfortunate that all this wonderful func-
tionality is fiendishly difficult to use. The rea-
sons for this are manifold: of course, many of
the underlying concepts, e.g. the behaviour
of TCP when subjected to traffic control, are
complicated and need some learning effort to
be understood. But there are also several ob-
stacles in the configuration process itself:
First, since all the individual components
of a traffic control configuration can be ma-
nipulated individually, the location and role of
each component needs to be specified in ev-
ery single configuration command. This redun-
dancy makes configuration scripts very hard to



read, and trying to find some small typing error
rapidly turns into a search for the proverbial
needle in the haystack.

Second, some elements just happen to be
complex by design. For example, the u32 clas-
sifier uses a pointer plus an offset to walk
through a packet, a tree of hash tables to
match the data, and a stack to revert to pre-
vious states in the classification process if a
match has failed. While having full control
over all these details allows the construction
of highly efficient classifiers, it burdens users
with a fair amount of information they need
to understand before expecting to accomplish
anything, and the sheer number of individual
configuration steps is likely to cause mistakes
to be made.

A rather vicious twist of the language used
by the “tc” tool are unusual naming conven-
tions for units, e.g. “mbps” stands for “220
bytes per second”, “kbit” can be “1024 bits”
or “1024 bits per second”, etc.
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Figure 4: Configuration example.

Figure 4 shows a configuration with a prior-
ity scheduler whose high-priority class uses a
TBF queue to shape traffic at 20’000 bits per
second, and a FIFO for the low-priority class.
The “u32” classifier is used to put packets to
TCP port 80 into the high-priority class.

These are the corresponding “tc” com-
mands:

tc qdisc add dev ethO root handle 1:0 prio
tc qdisc add dev ethO parent 1:1 tbf \
limit 10kB rate 20kbit burst 2kB mtu 1500
tc qdisc add dev ethO parent 1:2 \
bfifo limit 30kB
tc filter add dev eth0 parent 1:0 \

protocol ip u32 \
match ip protocol 6 ff \
match tcp dst 50 ffff classid 1:1

The language issues used to be comple-
mented by the nearly total absence of docu-
mentation, and incomplete and outdated on-
line help. Fortunately, the “Linux Advanced
Routing and Traffic Control” project [1] has
meanwhile provided much needed relief.

Since traffic control in general, and classi-
fication in particular are highly performance-
sensitive areas, it is desirable to be able to op-
timize the code, or even to use hardware accel-
eration. The modular design of Linux traffic
control makes it quite feasible to add new ele-
ments which use such optimizations, but such
a replacement is likely to be visible to the user,
and hence requires configuration changes.

To summarize, the main difficulties of Linux
traffic control are that configuration — much
like programming in assembler — focuses al-
most exclusively on low-level details, and that
the low level of abstraction of the interface
complicates the integration of performance op-
timizations.

4 The next generation

The goal of the tcng project is to extend the
existing traffic control to become more user-
friendly, and to make the interfaces of the
configuration system more flexible. This is
done by adding another layer of abstraction,
as shown in figure 5.
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Figure 5: New traffic control configuration.

Other outputs

The traffic control compiler “tcc” takes con-
figuration scripts in the new “tcng” language,



translates them to a common internal repre-
sentation, and then generates commands in the
“t¢” language from that representation.

Layering tcng on top of tc also allows the
use of teng without requiring any change to
the kernel, or to the tc utility.

With this new infrastructure, one can also
add modules to configure traffic control sub-
systems that are now based on “tc”. This is
described in some more detail in section 4.2.

It would even be possible to add parsers for
other languages than “tcng”, e.g. XML.

4.1 The “tcng” language

The teng language is in many ways similar to
C and Perl: structure is expressed implicitly
with the language syntax, there are variables
and arithmetic expressions, classifiers can be
expressed in a C-like syntax, and cpp can be
used to include files and to write macros.

Below is the tcng version of the example of
section 3:

dev "ethO" {
egress {
class (<$high>) if tcp_dport == 80;
class (<$low>) if 1;

prio {
$high = class {
tbf(limit 10kB,rate 20kbps,
burst 2kB,mtu 1500B);
}
$low = class {
fifo(limit 30kB);
}

The configuration begins with the interface
name (which could be omitted in the case of
eth0) and the role, i.e. ingress or egress. Then,
the entire classification is expressed in rules of
the form

action if expression;

where action can be the selection of a class,
or just drop to drop the packet. The boolean
expression uses the same syntax and the same
precedence rules as C. All the common fields
in IP, UDP, TCP, etc. headers are prede-
fined (e.g. tcp_dport is the TCP destina-
tion port, ip_src would be the IPv4 source
address, etc.), and users can also easily add
their own definitions. IPv4 and IPv6 addresses

have been added as first-class data types, and
can be written in the usual notation, e.g.
204.152.189.116 or host"ftp.kernel.org".
Below is an examples with a more interesting
classification expression:

ip_off == 1 ||
(ip_off == 0 &&
((ip_proto == IPPROTO_TCP && ip_len < 40) ||
(ip_proto == IPPROTO_UDP && ip_len < 28) ||
ip_len < 24))

This is a test for so-called “tiny fragments”
as described in the [5] and [6]. For convenience,
this test is also available as a macro called ip_
is_tiny_fragment.

Classes are selected with
(<$variable>), where the variable is later
defined in the queuing and scheduling sec-
tion. That section describes the hierarchy of
queuing disciplines, and their configuration.
Queuing disciplines with classes are followed
by a block (denoted by curly braces, like in C
or Perl), which contains all these classes. If a
class has a queuing discipline attached to it,
that definition is in a block following the class
description.

Arithmetic expressions can be used for pa-
rameters. tcng adjusts units automatically,
e.g. instead of ... 10 kB ..., one could write

. 10Mbps*8ms LA

Also metering is smoothly integrated into
the tcng language: if one wanted to limit the
high-priority traffic in the above example by
dropping all packets exceeding 20kbps, instead
of using a shaper, the configuration would look
as follows:

class

dev "eth0" {
egress {
$meter = SLB(rate 20kbps,burst 10kB);

class (<$high>)
if tcp_dport == 80 &&
SLB_or_drop($meter) ;
class (<$low>) if 1;

prio {
$high = class {
fifo(limit 10kB);
}
$low = class {
fifo(limit 30kB);
}
}

4This is actually just an approximation: in tcng, bit
or byte sizes use a multiplier of 1024, while all other
units (rates, time, etc.) use a multiplier of 1000.



“SLB” stands for “single leaky bucket” me-
ter. The SLB_or_drop macro yields “true” (1)
if the flow is still within the specified rate, or
drops the packet if the flow exceeds the rate.
Again, all the primitives that tcng uses to im-
plement meters are also available to users.

4.2 Acceleration

teng allows to bypass the traffic control sub-
system in the Linux kernel and to use alter-
native software implementations, or hardware
accelerators. tcng calls the different ways for
implementing traffic control “targets”.

An alternative software implementation is
illustrated with the “C” target, which emits C
code for the classifier, and then invokes gcc to
build kernel and tc modules.

The so-called external interface uses a more
subtle approach and translates classifiers to the
“access control list” form typically found in
firewall configurations. A third party program
can then use this output to configure a hard-
ware accelerator, e.g. a network processor.

The classifier in our example yields the fol-
lowing output at the external interface:

block eth0 egress

offset 100 = 0+(0:4:4 << 5)

action 2 = class 1:2

action 1 = class 1:1

match 0:72:8=0x06 100:16:16=0x0050 action 1
match action 2

The “offset” line defines how to calculate
the position of the TCP header. The matches
are simply tests of bit ranges, e.g. 100:16:
16=0x0050 tests if the 16 bits at an offset of
16 bits from the beginning of the TCP header
have the hexadecimal value 80.

The key aspect of tcng’s ability to generate
output for distinct targets is of course that no
or only very small changes are required in the
configuration scripts used as input.

5 Simulators

Since it would be nearly impossibly for users to
correct problems in a tcng configuration if they
are only detected when issuing the correspond-
ing t¢ commands, tcc must carefully mirror all

checks done by tc (i.e. syntax and consistency
inside a single command) and by the kernel
(i-e. parameter validity and consistency across
elements).

Testing this can be tricky, because the only
way to be absolutely sure that a configuration
is valid is to implement it. Doing this on a
live system would cause all kinds of problems,
ranging from disrupting normal network use to
kernel crashes by the occasional bug detected
when exercising unusual traffic control setups.

Worse yet, also verifying that the configu-
ration is not only formally correct, but that
it actually does what was intended, is time-
consuming and typically requires a specific
hardware setup.

teng avoids all these problems by simulating
the behaviour of traffic control in user space.

5.1 Traffic control simulator

The current simulator of teng is called “tcsim”.
In order to ensure that tcsim simulates exactly
the behaviour of the tc utility and the traf-
fic control subsystem in the kernel, it simply
takes the code from both, and adds a simula-
tion engine, plus some framework for configu-
ration and for tracing. This is shown in figure
6.
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Figure 6: Structure of the “tcsim’
The output of tcsim is simply a chronologi-
cal trace of all the events that have happened
in the simulation. The output can then be fil-
tered, and counted or plotted.
In order to test our example configuration,
we can use the following simulation:



dev "eth0" 56kbps {
#include "example.tc"

}

// (40+85)*8 = 1000 bits
every 20ms

send TCP_PCK($tcp_dport=25) 0 x 85
time 10s
every 100ms until 20s

send TCP_PCK($tcp_dport=80) 0 x 85
time 20s
every 2bms

send TCP_PCK($tcp_dport=80) 0 x 85
time 30s

In this example, we first generate low-
priority traffic at 50 kbps by sending a packet
of 1000 bits every 20 milliseconds.® After
ten seconds, we add high-priority traffic at 10
kbps. Since the total link speed is only 56 kbps,
some of the low-priority traffic is lost now. Ten
seconds later, we try to increase the rate of
the high-priority traffic to 40 kbps. Since the
shaper limits high-priority traffic to only 20
kbps, now half of this traffic is lost.
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Figure 7: Simulation result.

Figure 7 shows the cumulative traffic that is
enqueued and dequeued for destination ports
25 and 80, e.g. “D:0050” is the sum of the de-
queued traffic to port 80. This plot was gener-
ated directly with the tools available for tcsim.

teng version 8z has more than 1500 regres-
sion tests, and about a third of them use tcsim.

5.2 UML-based simulator

tesim is used extensively for regression tests
in the tcng system, and it is also quite useful

5The packet consists of 20 bytes for the IP header,
20 bytes for the TCP header, and the 85 zero bytes
generated with 0 x 85.

to debug configurations. One major drawback
of the approach of extracting code fragments
and gluing them together in the simulator is
that the build procedure for tcsim is fairly frag-
ile and requires frequent adjustments when the
kernel changes. Also, 2.4 and recent 2.5 ker-
nels differ sufficiently that the whole extraction
process would have to be re-designed and re-
written for 2.5.

Fortunately, a much less invasive alterna-
tive is already available: “User-Mode Linux”
(UML [7]) runs the Linux kernel in user space,
and it has recently been added to 2.5.

As an added bonus, UML is a complete
Linux system, so the entire networking stack,
including TCP, routing, etc. is available, and
arbitrary applications can be used to generate
traffic. This offers fantastic possibilities far be-
yond just experimenting with traffic control.
For example, one could use this as a starting
point for implementing a comprehensive net-
work simulator similar to ns-2 [8].

In order to use UML for simulations, mainly
two changes are necessary: the concept of
“time” in UML must be replaced with the vir-
tual time of an event-driven simulator. In or-
der to do this, the simulator must know when
a timer-driven activity is due, and advance the
kernel timers accordingly. An efficient imple-
mentation of this would also avoid executing
unnecessary ticks of the 100 or 1000 Hz kernel
timer.

The second change is to introduce mech-
anisms for executing simulation actions (e.g.
enqueuing of a packet), and for capturing the
results of such actions (e.g. receiving a notifi-
cation when a packet gets sent).

By now, the conversion of UML to use sim-
ulation time has been completed in the “uml-
sim” project [9], while instrumentation of the
UML simulator still remains to be done.

A UML kernel running with virtual time
will also be interesting for general regression
testing, e.g. some of the tests regularly per-
formed in the FreeS/WAN project [10] con-
sist of waiting for timeouts, so the test ma-
chines just sit there for minutes, waiting for
time to pass. With a virtual time base, such
tests could be completed in seconds instead.



6 Remaining issues

While teng contributes much towards making
traffic control more accessible, there are still
some problems left, and it also introduces some
new ones of its own.

First of all, tcng does not help at all against
the inherent complexity of traffic management.
In order to allow users to set up traffic con-
trol without needing to spend weeks reading
books and research papers, cookbook solutions
are needed. A very nice example of such a
cookbook solution is the so-called “Wonder
Shaper” [11] that implements intelligent band-
width sharing for the typical domestic Internet
access, and that requires users only to config-
ure those parameters they can be expected to
understand.

6.1 Performance

The perhaps biggest restriction of teng is cur-
rently the rather poor performance of the al-
gorithms that translate a classifier expression
into something suitable for the u32 classifier, or
also the external interface. First of all, it can
take tcc a long time (e.g. minutes, or worse) to
re-arrange sufficiently hairy expressions. Sec-
ond, the output of tcc is not always as compact
as it could be. Third, tcc does not make use
of all the mechanisms offered by u32, so the
resulting u32 classifiers are comparably slow.

Among these performance issues, the po-
tentially large amount of internal processing
in tcc is the most critical one. The author is
currently experimenting with algorithms that
translate expressions into finite state machines
(which are structurally much simpler), and
then work on these.

Instead of trying to make optimal use of
u32, it is probably better to write a new classi-
fier that is optimized for what output tcc can
generate easily.

6.2 Dynamic reconfiguration

One area where tcng is still lagging behind tc is
dynamic reconfiguration. tcng configurations
are currently self-contained and describe the
whole setup of an network interface or a set of
interfaces. If, for example, a single rule needs
to be added to a classifier containing a few
thousand rules, the whole configuration will

have to be re-processed. While this may be ac-
ceptable in many cases, applications requiring
frequent small changes are severely penalized
by this design.

A possible solution is to simply make pro-
cessing of the entire configuration very fast.

Another approach would be to add con-
structs to the tcng language to express highly
regular patters, e.g. a set construct. If all else
fails, one can still create optimized classifiers,
or introduce “magic” elements in regular clas-
sifiers, which can then be directly manipulated
at run time, without tcc’s knowledge.

6.3 Extensibility

Last but not least, it is currently hard to add
new traffic control elements to tcng. Partially,
this is plainly the result of the need for very
detailed consistency checks, which are hard-
coded into tcc, but simpler items like param-
eter naming and range checks could be im-
proved and generalized.

7 Conclusion

Traffic control in Linux is wonderfully versatile
but suffers today from a number of problems
that make it unnecessarily hard to use. We
have described these problems, and we have
presented a new configuration system, called
teng, that builds on top of the existing ar-
chitecture, that provides a configuration lan-
guage that is intuitive to most programmers,
and that — by abstracting its interfaces from
the actual implementation — makes it easier
to interface with the traffic control subsystem.
Furthermore, we have briefly introduced the
simulation environment of tcng, and its uses
for other applications.

Last but not least, we have listen several
problems that need to be addressed before tcng
can be considered to be in every respect a more
then adequate replacement for tc, and have
sketched directions for further work.
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