Scalable Resource Reservation for the Internet

Werner Almesberger <almesber@lrc.di.epfl.ch>,
Tiziana Ferrari <ferrari@lrc.di.epfl.ch>,
Jean-Yves Le Boudec <leboudec@lrc.di.epfl.ch>
EPFL DI-LRC, CH-1015 Lausanne, Switzerland

Abstract

Current resource reservation architectures for multi-
media networks don’t scale well for a large number
of flows. We propose a new architecture that aggre-
gates flows on each link in the network. Therefore,
the network has no knowledge of individual flows,
and resource management functions traditionally im-
plemented in the network (such as flow acceptance
control) are delegated to hosts.

1 Introduction

Many resource reservation architectures and proto-
cols that have been proposed for integrated service
networks borrow heavily from the architecture of the
telephony network:

e routers or switches between the communicating
hosts are required to store per-flow state infor-
mation

e reservations, once granted, are stringent and
conformance of traffic is carefully controlled
(policing)

e most of the difficult work (e.g. admission con-
trol) is entirely handled by the network

The general intention is to provide a network ser-
vice that is as deterministic as possible. While a
highly deterministic service is certainly attractive,
the complexity and lack of scalability of the afore-
mentioned architectures and protocols makes their
usefulness for many applications questionable. Par-
ticularly Internet telephony creates a need for very

inexpensive means to obtain a dependable quality of
service for a very large number of concurrent flows.

This goal can be achieved by aggregating flows
so that the reservation mechanism only needs to be
aware of a comparably small number of (aggregated)
flows. The architecture we propose in this paper goes
even beyond concepts for aggregation on top of tra-
ditional reservation architectures (e.g. [6] for ATM)
in that it makes aggregation the standard behaviour
of the network and not a special case requiring ad-
ditional protocol activity. It differs from approaches
ensuring relative fairness (e.g. [7] and [8]) in that
admission control is an integral part of it.

In short, our reservation model works as follows. A
source that wishes to make a reservation (for example
for Internet telephony) starts by sending data packets
marked with a request flag to the destination. These
packets are forwarded normally by routers, who also
take a flow admission decision on each of them. Af-
ter enough request packets have been sent, the source
learns from the destination its estimate of how much
of the reservation has been accepted in the network.
The source may then send data packets marked with
a reserved flag at the accepted rate. Routers that
have admitted, and thus forwarded, request packets
have committed to have enough resources to accept
subsequent reserved packets sent by the source at the
accepted rate. The accepted rate is computed inde-
pendently by sources and routers, using a “learn by
example” procedure. The accepted rate is guaran-
teed as long as there is a minimum activity by the
source. The reservation disappears by timeout after
the source has stayed idle for a while. Figure 1 shows
an idealized view of our model, and a more detailed

example is given in section 2.5. The initial data pack-
ets sent by the source can be thought of as “sticky”:
once a router has accepted some of them at a given
rate, it must continue to accept packets at the same
rate until the source becomes idle.

Bandwidth

Reservation Reservation use Reservation
setup and refresh imeout

Figure 1: Idealized reservation procedure.

A key feature of our proposal is that routers do
not keep state information per flow; routers only re-
member their reservation commitments globally per
output port. This is made possible by two features:

e routers rely on end-systems not to exceed their
accepted rates;

e routers maintain reservations by learning,
namely, by monitoring the actual reserved traf-
fic.

We discuss these two design directions in the rest
of this section. Section 2 describes the fundamental
architecture. Section 3 elaborates on that and also
points out areas where more research is needed. The
paper concludes with section 4.

1.1 The TCP case

For best-effort traffic, the Internet has illustrated
that network internals can be simple: besides rout-
ing, which has grown significant complexity, there are
no “intelligent” services inside the network. Respon-
sibility for congestion control is given entirely to the
end systems (e.g. TCP), which are in turn expected
to have some degree of complexity of their own. Also,
instead of providing stringent isolation among users,
the Internet relies on guided cooperation.

Time

Applying this approach to resource reservation
means to let end systems perform flow acceptance
control and to trust them not to exceed the agreed
upon reservations. In order to protect the network
from errors in application programs, the reservation
protocol handling needs to be implemented in the
networking kernel of the operating system.

If needed, policing functions can be implemented
per flow at some network access points; we believe
that such policing is not needed at inter-carrier ex-
changes, or in general anywhere beyond Internet ac-
cess points.

Because flow acceptance control is inherently flow-
specific, delegating it to end systems is a requirement
for enabling routers to efficiently aggregate arbitrary
flows.

The proposed architecture slightly extends the tra-
ditional Internet design by introducing the concept
of packet types to distinguish reserved traffic from
best-effort traffic. This also allows routers to give
more precise admission control indications than just
a simple forward—or—discard decision.

1.2 Adaptive applications

The desire to run multimedia applications over the
current best-effort Internet with all its imperfections
has motivated the development of increasingly so-
phisticated adaptive applications [9, 10]. Adaptive
applications tolerate variations in packet loss rates,
in bandwidth, and in delay.

Of course, even adaptive applications have certain
minimum requirements. This is typically a minimum
bandwidth, below which no useful operation is pos-
sible. If additional bandwidth is available, it is used
to improve the service (e.g. better audio quality).

The proposed architecture aims mainly to ensure
that adaptive applications can obtain their minimum
bandwidth. The service goals are similar to the ones
of the INTSERV controlled-load service [11]: Avail-
ability of enough bandwidth is guaranteed but all
other parameters (such as delay, loss rate, etc.) re-
main unspecified, although an application can as-
sume that they are in a “reasonable” range.

The presence of adaptive applications also implies
that there is usually enough best-effort traffic in the

network that only a small fraction of the total band-
width will be used for reserved traffic and that re-
source shortage for reserved traffic will be an infre-
quent situation.

1.3 Learning by example

New reservations are set up by sending data packets
with a request flag. When a router accepts such re-
quests, it predicts the arrival of future packets and
changes its reservation state accordingly.

Because the reservation information is sent directly
with the data, the reservation and the actual traffic
are automatically synchronized.

Central to our proposal is the concept of an esti-
mation module used by sources, routers, and destina-
tions. Assuming that sources emit traffic in regular
periodic patterns, a simple implementation could just
count the number of requests during a time interval
and use that to predict the increase of total reserved
bandwidth. Note that the period of a source must be
reasonably short compared to the observation inter-
val for such measurements to be meaningful.

The same principle is also used to detect decreases
in the use of reserved bandwidth: Routers monitor
the amount of reserved traffic and adjust reservations
automatically if sources reduce their bandwidth or
stop sending.! We describe this simple implementa-
tion in sections 2.3 and 2.5.

2 Architecture overview

The proposed architecture uses two protocols to man-
age reservations: a reservation protocol to establish
and maintain them, and a feedback protocol to in-
form the sender about the reservation status.

Figure 2 illustrates the operation of the two proto-
cols:

e Data packets with reservation information are
sent from the sender to the receiver. The reser-
vation information is processed by routers. They
may modify the reservation information or they
may also discard packets.

1A discussion of measurement-based admission control for
similar purposes can be found in [12].

Sender Data & reservations Receiver
/ \ \
~—[== 10

Figure 2: Network structure overview.

e The receiver sends feedback information back to
the sender. Routers only forward this informa-
tion; they don’t need to process it.

Routers monitor the effectively present reserved
traffic and adjust their reservations accordingly.

2.1 Reservation protocol

The reservation protocol is used in the direction from
the sender to the receiver. It is processed by the
sender, the receiver, and the routers between them.
In order to simplify processing of the reservation pro-
tocol, the reservation information is represented as a
packet type which is included in normal data packets.?
The reservation protocol uses three packet types:

Reserved The reservation has already been estab-
lished (and confirmed). The packet of type re-
served uses that reservation.

Request A reservation is needed for packets like the
current one, but a reservation has not yet been
confirmed (e.g. because no request was sent
yet or because the feedback hasn’t reached the
sender yet).

Best effort No reservation is needed.

Packet types are initially assigned by the sender,
as shown in figure 3. A traffic source (i.e. the appli-
cation) specifies for each packet if that packet needs a
reservation. If no reservation is necessary, the packet
is simply sent as best-effort. If a reservation is needed,
the protocol entity checks if an already established
reservation covers the current packet. If yes, the

2The encoding is yet unspecified. One possible approach is
to define a new IP option to carry the packet type.

packet is sent as reserved. Otherwise, an additional
reservation is requested by sending the packet with
the request flag.

Application Protocol stack
Yes
Reserved
Needs Reservation
reservation ™ | established ?
Request
No .
Doesn’tn_eed » Best effort
reservation

Figure 3: Initial packet type assignment by sender.

Each router performs the following processing (see
also figure 4):

e If a request can be accepted, the reservation is
made and the packet is forwarded unchanged.
Otherwise, its type is set to best-effort and best-
effort processing is performed.

e If a reserved packet is received, the router verifies
that a suitable reservation exists. This is nor-
mally the case and the packet is forwarded un-
changed and with priority over best-effort traffic.
If no reservation exists, either a protocol error
or a route change has occurred (see section 3.3).
In order to stabilize the reservation, the packet
type is changed to request and request processing
is performed.?

Furthermore, best-effort packets may be discarded
during congestion.

Note that the reservation protocol may “tunnel”
through routers that don’t implement reservations.
This allows the use of unmodified equipment in parts

3Considering that reserved packets will “magically” become
requests if necessary, one may be tempted at this point to
avoid the use of a request packet type entirely. At least in the
given framework, this does not work. Requests are needed to
isolate already established reservations from increases or new
reservations: if packets from “old” and “new” reservations were
both of type reserved, a router experiencing resource shortage
had no way of knowing which ones to degrade or even to discard
and it would consequently also penalize the “old” reservations.

Reservation | Y€s
established 7| ™ Reserved

e

Reservation | Ye€s
possible? | Request

e

Yes
Rt | e et

e
X

Reserved ——»

Request ——»

Best effort ——m

Figure 4: Packet type processing by routers.

of the network which are dimensioned such that con-
gestion is not a problem.

The receiver does no packet-type specific process-
ing. Instead, it counts incoming packets and sends
feedback to the sources.

2.2 Feedback protocol

The feedback protocol is used to convey information
on the success of reservations and on the network
status from the receiver to the sender. Unlike the
reservation protocol, the feedback protocol does not
need to be interpreted by routers, because they can
determine the reservation status from the sender’s
choice of packet types.

Feedback information is collected by the receiver
and it is periodically sent to the sender. The feed-
back consists of the receiver’s estimate of the current
reservation. The receiver computes this estimate by
executing an algorithm like the one routers use to
estimate the actual resource use. Additional infor-
mation can be included in feedback messages to im-
prove stability and to provide additional information
on network performance, e.g. the loss rate along the
path or the round-trip time.

The reservation estimated by the receiver is an up-
per bound for the rate at which the sender may send

requests and is used by the function that decides if
packets are sent as reserved or as request.

Receivers collect feedback information indepen-
dently for each sender and senders maintain the reser-
vation state independently for each receiver. Note
that, if more than one flow to the same destination
exists, attribution of reservations is a local decision
at the source.

The feedback mechanism can be implemented on
top of a protocol like RTCP [13].

2.3 Reservation dynamics

Reservations are set up for the traffic profile reflected
by the requests sent by the source. A router can
for instance count the number of requests it receives
(and accepts) during a certain observation interval
and use this as an estimate for the bandwidth that
will be used in future intervals of the same duration.

In addition to requests for new reservations, the
use of existing reservations needs to be measured too.
This way, reservations of sources that stop sending
or that decrease their sending rate can automatically
be removed. The use of reservations can be simply
measured by counting the number of reserved packets
that are received in a certain interval.

With such measurements for time ¢, the amount of
resources to reserve at time ¢ + 1 can be predicted as
follows:

reserve;,1 = requests; + rsv_seen,

with requests; being the sum of the resources re-
quested and rsv_seen; being the resources used by
reserved traffic, both measured during the observa-
tion interval starting at time ¢.

To compensate for deviations caused by delay vari-
ations, spurious packet loss (e.g. in a best-effort part
of the network), etc., reservations can be “held” for
more than one observation interval. This can be ac-
complished by remembering the observed traffic over
several intervals and using the maximum of these val-
ues. With a hold time of h observation intervals, the
reservation is computed as follows:

reservey1 = max(requests;_py1 + (1)

TSU_S€eNt_hil,-- -,

requests; + rsv_seeny)

(2)

The definition and evaluation of the algorithms for
reservation calculation in hosts and routers is still
ongoing work. The formulas above should serve only
as examples.

We call this algorithm an estimator, since it at-
tempts to estimate, based on past traffic, the re-
sources that will need to be reserved in the future.
Figure 5 shows how the estimator algorithm is used
in all network elements:

e Senders use the estimator for an optimistic pre-
diction of the reservation the network will per-
form for the traffic they emit. This, in conjunc-
tion with feedback received from the receiver, is
used to decide whether to send request or re-
served packets.

e Routers use the estimator for packet-wise admis-
sion control and also to detect anomalies (see
section 3.3).

e In receivers, the estimator is fed with the re-
ceived traffic and it generates a (conservative)
estimate of the reservation at the last router.
This is sent as feedback to the source.

A source always uses the minimum of the (op-
timistic) estimation of the reservation at the next
router and the (conservative) feedback.

As described in section 2.1, a sender keeps on send-
ing requests until successful reservation setup is in-
dicated with a feedback packet. This means that
the sender sends more requests than needed if the
round-trip-time is greater than the observation inter-
val. Routers can detect this by the lack of reserved
packets and they consequently refrain from increas-
ing the reservation. The feedback that is returned
to the sender may also show an increased number of
requests. The sender must not interpret those re-
quests as a direct increase of the reservation, because
the routers didn’t either. Instead, the sender uses the

4Some of them can, however, also be refused in the network
and either become best-effort or even get discarded.

Estim.
@»‘

Feedback

Estim.

Feedback

Sender

Router

Receiver

Figure 5: Algorithms in the senders, routers, and receivers.

same algorithm as the routers to correct the feedback
information accordingly.

2.4 Resource reservation in a router

This section gives an example of how resource reser-
vation can be handled in a simple router where only
output buffer space is controlled. Depending on its
architecture, a real router may have to take the sta-
tus and utilization of many other components into
account.

Figure 6 illustrates the packet processing in the
example router: After passing the router fabric, the
reservation information in each packet is examined
and acted upon (see section 2.1). Packets of type
request or reserved are put into the queue for reserved
traffic. All other packets are put into the best-effort
queue or they are discarded. The queues are emptied
by a scheduler which gives priority to the reserved
traffic queue.

Placing the reservation mechanisms directly be-
fore the output queues naturally leads to aggrega-
tion: since the critical resource at this point is queue
space, one can for instance express reservations as al-
locations of such space within a given interval. The
sum of the allocations then corresponds to the aggre-
gate bandwidth, which is reserved on that port.

Detection of malfunction can be improved without
impacting scalability by calculating reservations not
only for each output port, but for each input and
output port pair (which is called an “intersection” in

Admission control

and packet classifier Reserved traffic queue

Scheduler
g lly
S 8 > 8
-2 13 { :[[F} s .
= o
i 5 [\l g
& | /P °
> I
Best-effort queue
Figure 6: Example router.
figure 7).

2.5 Reservation example

In this section, we illustrate the operation of the
reservation mechanism in a very simple example. The
network we use is shown in figure 8: the sender sends
over a delay-less link to the router, which performs
the reservation and forwards the traffic over a link
with a delay of two time units to the receiver. The
receiver periodically returns feedback to the sender.

The bandwidth reservation in the router and the
reservation that has been acknowledged in a feedback
message from the receiver are measured. In figure 9,
they are shown with a thin continuous line and a thick

Reservation

control per
intersection
a
o]
o .
- g Reservation
g control per
- output port
Output ports

v

Figure 7: Reservation control in router.

Sender Router Receiver

Delay=2u Q
°

Bandwidth reservation
Reservation in feedback

Delay=0u

Figure 8: Example network configuration.

dashed line, respectively. The packets emitted by the
source are indicated by arrows on the reservation line.
A full arrow head corresponds to request packets, an
empty arrow head corresponds to reserved packets.
For simplicity, the sender and the router use exactly
the same observation interval in this example, and
the feedback rate is constant.

The source sends one packet per time unit. First,
the source can only send requests and the router re-
serves some resources for each of them. At point (1),
the router discovers that it has established a reserva-
tion for six packets in four time units, but that the
source has only sent four packets. Therefore, it cor-
rects its estimate and proceeds. The first feedback
message reaches the sender at point (2). It indicates
a reservation level of five packets in four time units
(i.e. the estimate at the receiver at the time when
the feedback was sent), so the sender can now send
reserved packets instead of requests. At point (3), the
next observation interval ends at the router and the
estimate is corrected once more. Finally, the second
feedback arrives at point (4), indicating the final rate

of four packets in four time units. The reservation
does no change after that.

3 Additional aspects

This section describes further details of the proposed
reservation architecture and discusses areas requiring
further research.

3.1 Starvation

Reservation establishment is incremental. It is there-
fore possible for a sender to obtain only a fraction
of the required resources if a shortage occurs before
all the requests have been accepted. This can lead to
starvation if several senders (unsuccessfully) compete
for same resource for an extended period of time.

A sender can react to this situation in the following
ways:

e give up and report reservation failure to the ap-
plication

e try to proceed with the partial reservation (e.g.
if the shortage occurred during an attempt to
increase an older reservation)

e back off and try again later

In the latter case, the sender has to wait for the
hold time plus a random delay before sending new
requests. The random delay should be exponentially
increased on repeated reservation failures to the same
destination.

3.2 Generation of inelastic best-effort
traffic

Degrading request packets to best-effort during re-
source shortage is desirable, because it allows the
communicating hosts to easily distinguish a mere
reservation failure from a total communication break-
down.

Unfortunately, blindly converting all request pack-
ets to best-effort may have disastrous effects on other
best-effort traffic: since a sender emits requests at the
full rate of the desired reservation, the resulting in-
elastic best-effort traffic would be grossly unfair with

Bandwidth reservation in the router

Bandwidth RTT/g RTT/g
: : 1 1 Reservation indicated
© T /
N D L e
traffic yd ']
// E
T vl ; : ‘ : Time
. : b |
l‘ti rr‘1e RTT+Feedback cycle Feedback cycle
unit 1 \ ‘ / 1 . request
_ o reserved

Observation interval (at sender and at router)

Figure 9: Protocol operation example.

respect to protocols like TCP, which perform end-to-
end congestion control (see also [14]).

If the network implements a packet type for in-
elastic best-effort traffic® or generally a lower pri-
ority type than normal best-effort traffic, that type
should be used when degrading request packets. Oth-
erwise, a more aggressive discard policy has to be
used for those packets. This could for instance be
modulated by measuring congestion-controlled traf-
fic (e.g. TCP) flowing to the same destination.

3.3 Route changes

Like most other reservation architectures, the pro-
posed one may fail to provide the promised service if
there is a route change. Architectural means to re-
duce the number of route changes to the absolutely
necessary minimum (e.g. “route pinning” [15]) are
outside the scope of this paper.

Once a route change occurs, e.g. due to a link fail-
ure, it typically has the following effects: The traffic
is redirected to a path on which no prior reservation
exists (b,c). In order to limit the impact of this, the
first router that detects the change should change re-

5Such a type would for instance have service characteristics
like a low delay but a higher loss probability.

served packets to request. In figure 10, routers A and
B can orderly try to establish reservations on links
a and b (and on all downstream links) if router A
changes the type of redirected packets. Note that A
cannot distinguish older reserved traffic sharing the
path via a and b from redirected traffic and that it
may therefore degrade reserved packets of the former
to requests.

Failed link

Extratraffic without
prior reservation

Extrarequests

Figure 10: Route change example.

A further anomaly can occur, if the original path

and the redirected path merge again further down-
stream (d): The original reservation and the new re-
quests that were generated to repair the reservation
can collide and yield an artificially high reservation.
This is similar to the time-to-feedback problem dis-
cussed in section 2.3 and the same mechanisms can
be used to overcome it.

3.4 Discussion of the estimation mod-
ule

We have presented in section 2.3 an estimation mod-
ule based on counting the number of bytes in request
and reservation packets per time interval. We dis-
cuss now some implications of this estimation mod-
ule. The estimated bandwidth required for one out-
put for the tth time interval is reserve;. Call T the
length of the time interval. If the estimation is cor-
rect, this means that an arrival curve for the aggre-
gate flow is a(u) = (T + u)reserve;. If the aggregate
flow is served at a line rate ¢, this implies that the
maximum delay variation for this flow is 7'
[16]. With this estimation module, the value of T is
thus linked to the delay imposed on reserved traffic.
This is undesirable, because we may want to choose a
large value for T in order to smooth out jitter, with-
out increasing the delay.

It is possible to modify the estimation module as
follows in order to remove this dependency. In sec-
tion 2.3, define requests; as the deterministic effec-
tive bandwidth for a delay bound D [16] of the flow of
requests over the tth time interval, and rsv_seen; the
deterministic effective bandwidth for the same delay
bound D of the flow of reservations. The determin-
istic effective bandwidth is the amount of bandwidth
that is required to serve an observed flow within a
given delay bound. This modification makes the es-
timation module more complex, but it makes it pos-
sible to have an observation interval 7' much larger
than the delay bound D. A more detailed analysis
of the estimation module is the object of current re-
search.

3.5 Multicast

The reservation mechanism described can be slightly
extended to a multicast scenario. The extensions con-
cern the feedback and the reservation protocol at the
source. They are needed to cope with several prob-
lems which are typical in a multicast environment:

o the joining mechanism: how to establish reserva-
tions to a new group member without affecting
the reservation already in place;

e transparency: events like route instability, topol-
ogy changes, joining and leaving of some group
members and situations like heterogeneous con-
nectivity should only affect their limited scope.
They should be completely transparent to the
remaining session members and also to the con-
nections established by other applications.

e feedback implosion: the feedback protocol which
works well in a unicast scenario does not scale
well in a multicast environment.

Establishing reservations in a multicast tree
The mechanism described here to build up reserva-
tions in a multicast context fits for multicast routing
algorithms in which sources do not flood traffic pe-
riodically to the network. In this way reservations
(request and reserved packets) can be restricted to
the links belonging to the multicast tree.

The source starts sending request messages to the
multicast routers which explicitly joined the group as
a reply to the source register message. Members of a
session are divided into two sets:

1. joining members, forming the request multicast
group;

2. “old” members, forming the reserved multicast
group.

This distinction is necessary in order to make the
joining operation transparent to the hosts and to the
branches already belonging to the session.® The pur-
pose of this division is to forward request packets only

6New members cannot join directly the reserved group be-
cause this would have the effect of injecting reserved pack-
ets into links on which the corresponding amount of resources
was not allocated before. Since routers have no means to dis-

on the path from the nearest multicast router be-
longing to the reserved group to the new member, as
shown in figure 11.

— request tree
—T= reserved tree

res res
—O
res res
req e
req & res \ res req
req \'req * res {] res req

O 00 o0 O

Figure 11: Request and reserved multicast group.

The join request is issued hop-by-hop toward
a multicast router already on the reserved tree.
Routers already receiving reserved traffic start send-
ing the multicast traffic to the member after receiving
the join request. In addition to that, they also switch
the reserved flag to request. Members of the request
group can compare their reservation estimate to the
target amount indicated by the source. If the reserva-
tion offered is acceptable, then the member can leave
the request group and join the reserved group.”

This mechanism can be implemented by associ-
ating two multicast addresses to the two distinct

tinguish “legal” from “illegal” packets, non-conforming data
would affect other reservations already in place. Vice versa,
the sending of request packets would have the effect of increas-
ing the reservation level on the trunks already belonging to the
reserved tree.

7This mechanism requires that the interval between the
leaving and the joining is small compared to the life time of
the reservation just established.

10

groups. The addresses can be different only in the
least significant bit — for example it can be 0 for the
request group and 1 for the reserved group. Then,
the algorithm executed by the multicast router when
a multicast packet is received, is the following;:

if ((pck_addr is multicast) and
(pck_type == rsvd)) {
forward pck to reserved group;
if (router is in the request group) {
newpck = copy(pck) ;
newpck_type = req;
forward newpck to request group;

Transparency In a network with bottlenecks the
algorithm should avoid that the link with worst con-
nectivity (e.g. with the lowest bandwidth availabil-
ity) limits the reservation offered to each member of
the group. To cope with this heterogeneity multicast
members could be grouped into separate sets and lay-
ered coding [19] could be used.

Hosts which can apply for the same reservation
level, are associated to different multicast groups.
All the receivers are included in a common multi-
cast tree for the distribution of the fundamental cod-
ing layer, then other coding layers can be added to
it. The traffic distribution of each layer can be im-
plemented through the reserved and request group
described above and each member can join several
groups at the same time depending on the quality of
its connectivity.

Feedback The problem of feedback implosion is
solved by simply not sending any explicit feedback
but by using group membership as an implicit in-
dicator instead. The multicast source can fix an a
priori value for the minimum amount of reservations
required to forward the traffic of a given coding layer.
After joining the request group the receiver does flow
acceptance control. If the estimated reservation is
acceptable compared to the target set by the source,
then it can leave the request group and join the re-
served, otherwise it leaves the request group and gives
up. So, the absence of a reserved group of a ses-
sion can mean two things: no members have joined

the request group yet or no members can accept the
reservation offered.

Since the source does not receive any feedback, it
can statically fix the reservation threshold of each
multicast group. If that amount of resources can not
be allocated, hosts will leave both groups, the mul-
ticast trees disappear and the (partial) reservations
time out.

4 Conclusion

We have proposed a new scalable resource reserva-
tion architecture for the Internet. Our architecture
achieves scalability for a large number of concurrent
flows by aggregating flows at each link. This aggre-
gation is made possible by entrusting traffic control
decisions to end systems — an idea borrowed from
TCP. Reservations are controlled with estimation al-
gorithms, which predict future resource usage based
on previously observed traffic. Furthermore, protocol
processing is simplified by attaching the reservation
control information directly to data packets.

We did not present a conclusive specification but
rather described the general concepts, and gave ex-
amples for basic implementations of core elements of
the architecture. Further research is needed to re-
solve open issues needed for a comprehensive spec-
ification and to improve efficiency, robustness, and
versatility of the algorithms and procedures outlined
in this paper.

References

[1] Braden, Bob; Zhang, Lixia; Berson, Steve; Her-
z0g, Shai; Jamin, Sugih. Resource ReSerVa-
tion Protocol (RSVP) — Version 1 Functional
Specification (work in progress), Internet Draft
draft-ietf-rsvp-spec-16.ps, June 1997.

[2] RFC1819; Delgrossi, Luca; Berger, Louis. ST2+

Protocol Specification, IETF, August 1995.

Ferrari, Domenico; Banerjea, Anindo; Zhang,
Hui. Network Support for Multimedia - A Dis-
cussion of the Tenet Approach, Computer Net-

11

[10]

[11]

works and ISDN Systems, vol. 26, pp. 1267-1280,
1994.

The ATM Forum, Technical Committee.
ATM User-Network Interface (UNI) Sig-
nalling Specification, Version 4.0, ftp:

//ftp.atmforum. com/pub/approved-specs/
af-sig-0061.000.ps, The ATM Forum, July
1996.

The ATM Forum, Technical Committee. ATM
Forum Traffic Management Specification,
Version 4.0, ftp://ftp.atmforum.com/pub/
approved-specs/af-tm-0056.000.ps, April
1996.

Gauthier, Eric; Giordano, Silvia; Le Boudec,
Jean-Yves. Reduce Connection Awareness,
http://lrcwww.epfl.ch/scone/scone_
paper2.ps, Technical Report 95/145,
EPFL, September 1995.

DI-

Floyd, Sally; Jacobson, Van. Link-sharing and
Resource Management Models for Packet Net-
works, IEEE/ACM Transactions on Networking,
Vol. 3 No. 4, pp. 365-386, August 1995.

Liebeherr, Jorg; Akyildiz, Ian F.; Sarkar, De-
bapriya. Bandwidth Regulation of Real-Time
Traffic Classes in Internetworks, Computer Net-
works and ISDN Systems, Vol. 28, No. 6, April
1996, pp. 855 - 872.

Diot, Christophe; Huitema, Christian; Turletti,
Thierry. Multimedia Applications should be
Adaptive, ftp://www.inria.fr/rodeo/diot/
nca-hpcs.ps.gz, HPCS’95 Workshop, August
1995.

Bolot, Jean; Turletti, Thierry. Adaptive Error
Control For Packet Video in the Internet, Pro-
ceedings of IEEE ICIP 96, pp. 232-239, Septem-
ber 1996.

Wroclawski, John. Specification of the
Controlled-Load Network Element Ser-
vice (work in progress), Internet Draft

draft-ietf-intserv-ctrl-load-svc-05.

txt, May 1997.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

5

Floyd, Sally. Comments on Measurement-based
Admissions Control for Controlled-Load Ser-
vices, ftp://ftp.ee.lbl.gov/papers/admit.
ps.Z, July 1996.

RFC1889: Schulzrinne, Henning; Casner,
Stephen L.; Frederick, Ron; Jacobson, Van.
RTP: A Transport Protocol for Real-Time Ap-
plications, IETF, January 1996.

Floyd, Sally; Fall, Kevin. Router Mechanisms
to Support End-to-End Congestion Control,
ftp://ftp.ee.1lbl.gov/papers/collapse.ps,
Technical report, LBL, February 1997.

RFC1633; Braden, Bob; Clark, David; Shenker,
Scott. Integrated Services in the Internet Archi-
tecture: an QOverview., IETF, June 1994.

Le Boudec, Jean-Yves. Network calculus made
easy, http://lrcwww.epfl.ch/PS_files/
d4paper.ps, Technical Report 96/218, EPFL-
DI, submitted to IEEE TIT, December 1996.

Ballardie, Tony. Core Based Trees (CBT) Multi-
cast Routing Architecture (work in progress), In-
ternet Draft draft-ietf-idmr-cbt-arch-06.
txt, May 1997.

Maufer, Tom; Semeria, Chuck. In-
troduction to IP Multicast ~ Routing
(work in progress), Internet Draft

draft-ietf-mboned-intro-multicast-02.
txt, March 1997.

McCanne, Steven; Jacobson, Van; Vetterli, Mar-
tin. Receiver-driven Layered Multicast, ACM
SIGCOMM ’96, August 1996.

Author’s address

Werner Almesberger
Jean-Yves Le Boudec
Institute for computer Communications and Applications
Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne

Switzerland

email: {almesber,leboudec}@Irc.di.epfl.ch

Tiziana Ferrari

DEIS, University of Bologna
viale Risorgimento, 2
1-40136 Bologna

Ttaly

and

Italian National Inst. for Nuclear Physics/CNAF
viale Berti Pichat, 6/2
1-40127 Bologna

Ttaly

email: ferrari@Irc.di.epfl.ch

