High-speed ATM networking on low-end computer systems

Werner Almesberger
werner.almesberger@lrc.di.epfl.ch

Laboratoire de Réseaux de Communication (LRC)
EPFL, CH-1015 Lausanne, Switzerland

August 31, 1995

Abstract

The practicability of high-speed communication on
low-end systems has frequently been questioned
and even less demanding variants of high-speed
networking standards have been developed to ac-
commodate for the restrictions of contemporary
personal computers. In this paper, architectural
aspects of existing PC hardware, ATM network
adapters, and operating systems are examined, and
in fact, serious limitations are discovered. Primar-
ily memory bandwidth is found to be insufficient to
support the number of transfers required by tradi-
tional networking implementation designs, plus the
number of further accesses required for data pro-
cessing by the sending or the receiving application.
The use of single-copy, a concept well known from
higher-end systems, is proposed as a means to over-
come the memory bandwidth bottleneck. Not only
usage scenarios in which single-copy can be reason-
ably applied, but also situations in which single-
copy would yield only marginal improvements or
where performance could even deteriorate are iden-
tified. Furthermore, implementation issues, such as
locking of shared user pages, are discussed. Finally,
the performance of single-copy is tested in an imple-
mentation of ATM support on Linux, done at LRC,
by measuring uni- and bidirectional AALS5 through-
put with different PDU sizes. The measurement
results indicate that high-speed communication is
feasible on today’s low-end systems for applications
which are primarily uni-directional in nature, and
which respect alignment and access constraints im-
posed by optimizations like single-copy.

1 Introduction

Low-end computers are becoming a potential plat-
form for high-speed networking, such as 155 Mbps
ATM. The bottlenecks encountered there are of the
same nature as the bottlenecks which existed only
a few years ago in workstations [1]. Section 2 de-
scribes common entry-level ATM adapter designs.
Then, characteristics of contemporary PCs (as a
typical low-end host architecture) are compared
with those of workstations in section 3. Mem-
ory bandwidth is identified as the major bottleneck
for network throughput and approaches to use the
scarce resources more efficiently are shown. This
is followed in section 4 by measurements on an im-
plementation of one of the described solutions. The
paper concludes with a critical analysis of the possi-
bilities and the limits of high-speed ATM network-
ing on low-end systems.

Industry-standard PCs running Linux, a POSIX-
conformant freeware operating system, are used in
this document as typical examples of today’s low-
end computers. As an indicator for network per-
formance, primarily throughput was considered. It
has to be noted that some applications require min-
imal latency, which is frequently an antagonistic
goal to high throughput.

Only Unassigned Bit Rate (UBR) traffic, carry-
ing Classical IP over ATM [2], with TCP and UDP
as transport protocols, and “raw” AALSb, are con-
sidered in this paper. Other traffic types, especially
Available Bit Rate (ABR), will create more subtle
requirements for systems of the future. Other im-
portant ATM protocols (e.g. LAN emulation) are
similar to IP over ATM as far as this study is con-

cerned.

2 Adapter designs

This section briefly describes bottlenecks found in
ATM adapters themselves and then describes two
competing designs which are very common among
entry-level ATM adapters.

2.1 Adapter bottlenecks

Early ATM adapters often suffered from an overly
simplistic design. One rather common restriction
was that AAL processing had to be performed in
software. Although some optimizations are possi-
ble even with only marginal hardware support, per-
formance typically remains significantly below the
bandwidth offered by the network, and an overly
large amount of CPU time is consumed just for us-
ing the network.

However, the opposite extreme is also possible.
[3] illustrates how designs that attempt to offload
all processing to the ATM adapter may yield non-
optimal interfaces and that the processing capa-
bilities of the adapter itself may become the new
bottleneck.

Modern entry-level ATM adapters therefore per-
form AAL5 and sometimes also partial AAL3/4
processing in hardware while still remaining com-
parably simple devices.

2.2 Buffering adapters

The traditional approach for receiving found in
many 10 Mbps Ethernet adapter designs is to copy
the whole packet from the network to a buffer on
the adapter, to interrupt the host when reception
is complete, and eventually to copy the packet ei-
ther under host control (“programmed I0”, “PI-
0"), or using bus-master Direct Memory Access
(DMA) to host memory. In the send direction,
the corresponding reverse operation is performed.
Buffer memory typically has a size of about 8 kB
on such Ethernet adapters. For 155 Mbps ATM,
more is needed, e.g. 512 kB. A schematic drawing
of a buffering ATM adapter is shown in figure 1.
Applying this concept to ATM turns out to be
problematic. First of all, AAL5 payloads can be
more than 40 times larger than 10 Mbps Ethernet

— = Seg —

4
© [}
@ DMA Buffer PHY]

= ko]
g z
c
P - % Reass —
(=]
- ;

«# Control Logic

Figure 1: Buffering ATM adapter.

frames (65535 vs. 1500 bytes), so the time needed
to transfer a PDU from adapter to host memory
may have a noticeable influence on end-to-end de-
lays. As an example, a maximum size AAL5 PDU
(64 kB) is sent as one burst at link speed over a
155.562 Mbps ATM link (approximately 16 MB/s
effective data rate) in 3.9 ms. If it has to be copied
to and from buffers over a 50 MB/s bus at both
sides, the total transfer time is increased by 64% to
6.4 ms.

The second problem is that a large amount of
expensive buffer space may be required to hold in-
complete PDUs of multiple incoming connections.
If ring buffers are allocated in contiguous memory
(e.g. [4]), each receive VC must have some individ-
ual buffer space. Also, send VCs may need separate
buffers. Combined with typical hardware restric-
tions, e.g. that the size of a ring buffer must be
an integer power of two, up to 256 kB of buffer
space may be needed for each bidirectional ATM
connection if maximum size AAL5 PDUs have to
be handled.!

A comparably large number of interrupts is gen-
erated: When sending, the host is interrupted when
the packet has been copied to buffer memory, and
it is interrupted a second time when the last cell of
the packet has been sent.? When receiving, the first
interrupt is generated when the PDU has arrived
in buffer memory. The host then has to determine
where in host memory the data should be copied,
which may involve some non-negligible processing
in the interrupt handler. Finally, the host is inter-

1Fortunately, this case is rare. A very common payload
size is 9188, corresponding to the default MTU for IP over
ATM ([5]).

2This interrupt can be used to wake up processes waiting
for adapter buffer space.

rupted a second time when all of the data has been
copied to host memory.

Nevertheless, the buffering approach keeps the
general adapter design simple and may also be
used to implement more efficient receive proce-
dures, which may require sophisticated methods to
predict traffic properties on adapters doing just-in-
time DMA, as described in section 3.5.

2.3 Just-in-time DMA adapters

An alternative approach is to transfer data imme-
diately to host memory when it is received (“just in
time”). This eliminates the need to provide large
buffers on the adapter and it also reduces end-to-
end delays. A schematic drawing of an adapter
doing just-in-time DMA is shown in figure 2.

— I L Sy >
x
o
8 DMA LI E
“5 b4
T - @ Reass e -
o
I

1 ' i

Control Logic

Figure 2: ATM adapter using just-in-time DMA.

In the transmit direction, packets are enqueued
in one or more queues in host memory (there is
typically one queue per traffic shaper), the adapter
copies data using bus-master DMA as cells are be-
ing prepared for sending, and an interrupt is gener-
ated after the last cell of a PDU has been sent. This
process differs from buffer-based approaches basi-
cally only in the avoidance of one interrupt and the
absence of the copying delay.

In the receive direction, things tend to be more
complex. Typically, the host sets up one or more
lists of free packet buffers in host memory and re-
plenishes them later on in an asynchronous way.
The adapter fetches new buffers from this list when
cells are received. After receiving the last cell of a
PDU, the host is interrupted. Again, only one in-
terrupt per PDU is necessary. However, additional

interrupts may be generated whenever the size of a
free buffer list falls below a certain threshold.

This design approach avoids adapter buffer space
bottlenecks, but adds the following two problems:
first, since only a limited number of cells can be
queued on the adapter in the receive and transmit
direction, the system architecture must limit the
delay until bus master access is granted. Second,
alignment and size of receive buffers are determined
before the data is received. This complicates some
optimizations, as described in section 3.5.

3 Host bottlenecks

Traditionally, the first categories of end systems
for which ATM was used in research and indus-
try were typical server- and workstation-type ma-
chines. Normally, such systems differ from low-end
systems (e.g. industry-standard PCs) primarily in
the following aspects:

e better CPU performance,
floating-point operations

especially for

o frequently: multiprocessing-capability
e higher IO bus bandwidth
e higher memory bus bandwidth

Since ATM is still a relatively new technology,
ATM device drivers are typically not optimized to
exploit multiprocessing capabilities. Also, modern
PC-type machines offer integer processing perfor-
mance comparable to typical workstations. Differ-
ences in CPU power therefore tend to have only a
minor impact on network performance.

IO bus bandwidth used to be a major limitation
of low-end systems, with theoretical peak band-
widths as low as 8 MB/s (ISA) or 30 MB/s (EISA).
Fortunately, the PCI bus, offering workstation-
class throughput (133 MB/s theoretical, a little
more than 50 MB/s measured) is now being used in
all but the cheapest PCs [6]. Since 155 Mbps ATM
only transfers about 16.8 MB/s of user data unidi-
rectionally, IO bus bandwidth is rarely a limiting
factor anymore.

Table 1 shows characteristic bandwidths of
busses in modern PCI systems [7]. The combined
bandwidth is the estimated bandwidth for send

Configuration | Neptune Triton
Cache EDO+Cache
Mem to mem 19 39
Mem to IO 51 53
Combined 13.8 22.5

Table 1: Bandwidth (in MB/s) of data paths using
chipsets found in modern PC architectures.

or receive operations from or to memory if imple-
mented in the traditional way (see below), i.e. for
transfers which involve a memory to memory copy,
followed by a memory to IO copy, or vice versa.
The effectively available bandwidth can be higher
if both types of transfers can — at least partly — be
performed simultaneously.

Most operating systems copy network data at
least twice: between the network adapter and a ker-
nel buffer, and between the kernel buffer and user
space. As shown above, the bandwidth available for
this type of operation on common PCs (e.g. using
the Neptune PCI chipset) is far below the unidirec-
tional peak data rate of 155 Mbps ATM. Even on
the type of PCs which constitute the state of the
art at the time of writing, the bandwidth available
in the system could not support two simultaneous
streams (e.g. copying from a disk to the network)
if data is copied to an intermediate buffer.

To summarize, the most critical bottleneck in to-
day’s low-end systems is memory bandwidth [8].
Throughput can be improved by reducing the num-
ber of times data is copied in host memory. Con-
cepts to achieve this reduction are discussed in the
following sections.?

3.1 Checksum avoidance

Before any single-copy can be considered, it has to
be determined whether an operation with an over-
head similar to copying needs to be performed any-
way. In TCP/IP protocols, this is frequently the
case, since UDP optionally uses a checksum and
TCP even requires it. Since on many architectures,
checksum computation does not add much over-
head if interleaved with a copy operation ([11]),

3See also [9] and [10] for several approaches to reduce the
impact of copy operations on system performance.

single-copy is not practical in such cases.* Note
that current entry-level ATM adapters do not sup-
port generation or checking of IP, UDP or TCP
checksums in hardware.

While interoperability with standard TCP im-
plementations would have to be sacrificed when
removing checksums from TCP, no compatibility
problems arise for UDP. Since most APIs hide in-
formation about the checksum of incoming UDP
datagrams from applications, the kernel can trans-
parently omit UDP checksums without the need for
application support.

UDP checksums guarantee end-to-end consis-
tency. Because AAL5 provides a much stronger
protection — particularly against bursts of errors —
by a 32 bit CRC, end-to-end consistency is pre-
served even without UDP checksums if one ATM
connection is used end-to-end. Therefore, UDP
checksums are not needed if source and destina-
tion are communicating directly over ATM, which
typically can be assumed if both machines connect
to the same logical IP subnet (LIS, see also [2]) and
if that LIS or the destination machine is also the
next hop in the sender’s routing table.

Figure 3 illustrates the cases where the sender
and the destination are on the same LIS, where
both are on the same ATM network but in differ-
ent LISs, and where they are on different ATM net-
works only connected by an IP router.

ATM

Destination on
different ATM [
network

IP router connecting

ATM networks [1 Destination on samelLIS

Destination on different LIS
Sender [}

IP router connecting LISs

Figure 3: End-to-end consistency is not guaranteed
if UDP checksum is omitted on paths crossed out
in the picture.

Attempting to remove IP header checksums is

4However, since computing only the checksum is less ex-
pensive than copying data, some minor improvements are
possible by avoiding half of the copy operation.

not useful, because that would also cause interop-
erability problems, and because IP headers are typ-
ically too small (20 bytes) to justify any elaborate
single-copy concept.

3.2 Send locking

Single-copy in the transmit direction has to lock
and protect the pages of the sending application
in physical memory, to translate their virtual ad-
dresses to physical addresses (and to record them in
a data structure called a scatter-gather vector), to
set up the transfer, and to unlock the pages when
the packet has either been copied to the adapter’s
buffer or when its last cell has been sent, respec-
tively (figure 4).

User pages to send

Virtual address space

Physical address
space

Scatter-gather vector

Figure 4: Pages drawn in grey are locked in physical
memory.

Performance degradation may occur if the appli-
cation modifies pages immediately after the send
operation, thereby causing the locked pages to be
replaced by (writable) copies in the application’s
address space. If the modification is the result of
another system call (e.g. a receive operation), that
system call can be extended to unmap pages that
will be entirely overwritten by it before writing
data.’ This operation conforms to the semantics
of the read system call as specified in [12]. It is
illustrated in figure 5.

Note that only pages that will be replaced in their
entirety can be unmapped. Therefore, performance
is improved if buffers are aligned to page boundaries
and if their size is a multiple of the physical page
size.

5Tf such a page is shared by multiple processes, it has to
be replaced in all of them.

User pages to send/overwrite

T B | v ssess

Physical address
space

Figure 5: A read operation following a send oper-
ation can unmap pages drawn in black from user
address space to avoid unnecessary copy-on-write.

A different approach of avoiding excessive copy-
on-write overhead would be to block the sending
process until the data has been sent or copied.
This avoids complicated memory management op-
erations® and can also be used in cases where pages
are overwritten shortly after sending by something
other than a system call. The drawback is that pro-
cesses may be blocked for a long time if the adapter
does not provide a buffer or if that buffer is full.

3.3 Receive prediction

The problems on the receiving side are more varied
than for sending. A major difference is that the
receive operation may not have been initiated when
data arrives, so the ultimate destination in host
memory is not known and data has to be buffered,
which is typically done in kernel memory.

Protocol headers

Control information Protocol trailers

and paddir:g\ . User data ! SPSglcsécal address
[s s
mappe& \ copied
Virtual address ‘ | ‘ ‘\‘ ‘ ‘
space
Receive buffer

Figure 6: Mapping of memory pages from receive
buffers to user space.

In order to avoid the copy operation from ker-

81f the memory area is shared with other processes, the
effect of concurrent write accesses is undefined.

nel memory to user space, pages of receive buffers
can be mapped into user space as illustrated in fig-
ure 6. For this to work, the alignment of the data
in kernel buffer and user memory has to be the
same. Since the semantics of the read system call
([12]) and related system calls do not allow the op-
erating system to provide or alter the start address
of receive buffers in user space, heuristics have to
be used to predict the parameters influencing both
alignments:

e size of control information
e size of protocol headers

¢ placement of the application’s receive buffer

Control information is usually constant in size.
Since memory allocation inside the kernel is fre-
quently constrained (e.g. to page boundaries),
padding bytes are inserted between the control in-
formation block and the beginning of data received
from the network in order to improve alignment.

The size of protocol headers and the placement
of the application’s receive buffer usually depend
on which application will receive the packet. When
several protocols are multiplexed over a single ATM
connection (e.g. TCP/IP), heuristics must be used
to select the application and the protocol. If the
choice was incorrect, the packet still has to be
copied from kernel to user space.

Applications may attempt to cooperate’ by
aligning their receive buffers to page boundaries.?
In this case, the placement of the application’s re-
ceive buffer is known and only the size of the pro-
tocol headers and the receiving application have to
be determined. Note that the same information
may also be available independent of alignment of
receive buffers if the application issues the receive
system call before the kernel receive buffer has to
be set up.

7[13] proposes a mechanism to communicate alignment
requirements to applications.

8The example suggests that a different alignment may
conserve memory by avoiding the need for padding between
control information and the received data. While this is true,
different alignment constraints may apply to other chan-
nels on which the data may travel before or afterwards (e.g.
from/to a disk), which typically limits the number of com-
patible choices.

3.4 Perfect receive prediction

Perfect prediction of the protocol and of the receiv-
ing application can be comparably easy with buffer-
ing adapters. Since the packet is already present in
adapter memory, a quick header analysis can pro-
vide all the information needed. Adapters like the
Efficient Networks ENI155P used in this case study
provide the necessary functionality.

In order to determine the destination of a UDP?®
packet at an end system, only the following fields
of an IP packet have to be examined:1°

o the fragment offset!!
e the IP protocol number

e the UDP destination port number

After receiving the packet, additional fields (like
the IP header size, to determine the presence of
options) have to be checked. If their values do
not correspond to what was assumed, the usual,
less efficient processing has to be performed on the
packet.

In addition to the information obtained for ap-
plication selection, either the UDP packet length
or the AAL5 payload length is needed to allocate
the appropriate amount of buffer memory.

3.5 Statistical alignment

Single-copy is much more difficult for adapters
transferring received cells directly to user mem-
ory. They typically fetch free buffers from one or
more lists which are replenished by the host asyn-
chronously with respect to the receive operation.
The list to get free buffers from is either selected
by examining the growth of the incoming PDU
(Fore, see [14])'? or by a static association with
VCs (uPD98401, see [15]).

Since there is no possibility to examine packet
headers before data is received in host memory,

9As explained in section 3.1, TCP is less suitable for
single-copy approaches.

10Since this is done in an interrupt handler, the amount
of processing has to be minimized.

Since fragmentation may be very rare for high-
bandwidth traffic on ATM networks, this check can also be
deferred until the packet is copied to host memory.

12The beginning of a packet is normally stored in a “smal-
I” buffer. If the packet is bigger than a small buffer, it is
continued in one or more “large” buffers.

alignment choices have to be based entirely on
heuristics. Also, the use of free buffer lists delays
any reaction to changes in traffic patterns.

Because the 4PD98401 only supports buffers of a
constant size per free list and because the free list is
chosen based on the VC, buffers of worst-case size
have to be allocated if data is to be stored in con-
tiguous memory. Freeing the unused part of such a
large buffer after the size of the received packet is
known may lead to internal memory fragmentation.

Better allocation granularity can be achieved by
using another feature of that chip, which is similar
to the behaviour of Fore adapters: if one buffer fills
up, the next buffer is automatically fetched from
the free buffer list.!®> This can be exploited for en-
queuing single pages as free buffers, possibly with
different alignments in different free lists, see figure
7. In order to avoid fragmentation because of align-
ment mismatch in adjacent buffers, multiple buffers
with the same alignment should be allocated back
to back.

Buffers aligned to page boundaries

\ // Buffer list descriptors

‘HHH ‘mm ‘ ‘ ‘ Physical address space

/\\\\

Buffers aligned with offset to page boundaries

Figure 7: Alignment of buffers in free lists.

A problem arises when protocol headers or trail-
ers do not appear on adjacent pages, because pro-
tocol processing code should not be burdened with
the requirement to perform complex memory ad-
dress translation for each access. For headers, the
problem can usually be avoided by making buffers
large enough for the largest expected header (whose

13The actual organization is even more complex since
buffers are grouped in batches. Batches correspond to pack-
ets, and the overflow mechanism is applied in this form to
batches only. However, since a batch may contain only a sin-
gle buffer, it can be said that overflows with a granularity of
a single buffer are possible.

size can normally be estimated) to fit. Since head-
ers rarely grow beyond typical memory page sizes,
no special precautions may be necessary.

Unfortunately, trailers may be placed at about
any address, so they need to be treated separately.
As for headers, the maximum size of a trailer can
be estimated. After receiving a packet, the kernel
can check whether the whole trailer is on the last
page.!* If this is not the case, two new, contigu-
ous pages are allocated and the content of the two
last pages is copied to these new pages. Since this
operation should be very infrequent, no major per-
formance loss should occur.'®

This concept can also be extended to handle
cases where the maximum header or trailer sizes
are not known in advance and where new informa-
tion about encapsulation is obtained incrementally,
e.g. at different protocol layers.

4 Experimental results

Support for sending and receiving “raw” AALS
datagrams over the socket interface with or with-
out single-copy has been implemented in the Linux
kernel at LRC.16 IP over ATM performance will be
studied in the future.

Performance measurements were done on PCs
with 90 MHz Pentium processors, 32 MB of RAM,
a PCI bus using the Intel Neptune chipset, and Ef-
ficient Networks ENI155P-MF-C 155 Mbps OC3
ATM adapters. Send and receive buffers in the
adapters were set to 128 kB, buffers in the kernel
were not bounded. A version of the ttcp program
with extensions to support ATM was used for the
measurements.

In addition to raw AALS5, partial support for
Classical IP over ATM ([16]) using LLC/SNAP
encapsulation ([17]) over PVCs has been imple-
mented.

14This assumes that the maximum trailer is not bigger
than one page. If trailers can grow beyond the size of a
single page, the numbers have to be increased accordingly.

151f trailer fragmentation occurs systematically on a VC,
a different memory allocation strategy has to be chosen for
that VC.

16More information about the current implementation can
be obtained from http://lrcwww.epfl.ch/linux-atm/

4.1 Unidirectional transmission

Two PCs were used for this experiment. One of the
PCs sent a burst of 2048 datagrams of constant size
from user memory to the other PC, which received
them to user memory. No additional data process-
ing was done. Both PCs were connected directly,
without a switch.

Without single-copy

Figure 8 shows sender and receiver data rates at the
socket interface. The theoretical maximum data
rates for AALS5 traffic on 155 Mbps OC3 ATM (90.4
Mbps to 135.4 Mbps) are also indicated.'” Note
that the send data rate can be higher than the
effective transmission rate if data is copied faster
from user space to kernel space than it is sent over
the network. The error bars indicate the extremal
values measured in ten experiments.

140 ¢ Theoretical limit

120
100 -
80
Sender

60 -

40 Receiver

Data rate at socket in Mbps

20 -

32 64 128 256 512 1k 2k 4k 8k 16k
AALS5 payload size in bytes

Figure 8: Data rate of “raw” AALS traffic at the
socket interface when copying to and from receive
and send buffers.

As can be seen, the sender is able to come reason-
ably close to the maximum data rate only for data-
grams of 8 kB or larger. The receiver can barely
handle 100 Mbps and also requires large datagrams
for reasonable performance.'®

For loss-free continuous transmission, the sender

7For clarity, only the rates for the datagram sizes used in
the measurements are shown. The rates for all possible sizes
have larger variations, because of the fixed cell size.

180ne of the reasons why the receiver is significantly
slower is that the device driver uses different DMA burst
sizes for receiving and sending. This had to be done to work
around a problem with the Neptune chipset.

would have to adapt to the maximum rate the re-
ceiver can handle.

With single-copy

Much better throughput has been achieved when
avoiding copying data from and to the intermediate
kernel buffer. The measured data rates are shown
in figure 9.

140 T Theoretical limit

120
100
80 [
Sender

60 -

40 Receiver

Data rate at socket in Mbps

20 -

32 64 128 256 512 1k 2k 4k 8k 16k
AALS payload size in bytes

Figure 9: Data rate of “raw” AALS traffic at the
socket interface when using single-copy.

There is no difference to the copying approach
in the receive direction for datagram sizes below
the memory page size, 4 kB, because the contents
of partially filled pages are always copied. As soon
as single-copy can be used, the data rate immediate
jumps to approximately 128 Mbps and increases for
larger datagrams only to 129 Mbps.

In the send direction, pages are always locked
in physical memory, independent of the amount of
data transferred. This operation is slightly more
complex than allocation of a buffer and copying
of data, so up to about 512 bytes, the solution
with copying is slightly faster. For 1 kB and larger
datagrams, the non-copying version is much faster.
Maximum network speed is reached already for 2
kB datagrams. In fact, the possible throughput in-
creases almost exponentially, as is shown in figure
10.

4.2 Loopback transmission

Although the unidirectional tests illustrate how
single-copy improves the throughput, they do not
correspond to typical real-life applications, where

10000

1000 ¢

100 ¢

10 ¢

Data rate at socket in Mbps

32 64 128 256 512 1k 2k 4k 8k 16k
AALS payload size in bytes

Figure 10: Send (enqueue) rate at the interface
when using single-copy.

data is generated or loaded at the sender, and pro-
cessed, displayed, or stored at the receiver. This
means that at least twice the network bandwidth
is needed inside the system to perform some mean-
ingful tasks.

A very simple test has been designed to obtain
indicative results for this case: one PC runs a send-
ing and a receiving ttcp on the same VPI/VCI. An
external loopback is formed with the fiber.

Without single-copy

Figure 11 shows the case using buffering. Not un-
expectedly, the sender and the receiver run at ap-
proximately the same speed and the total through-
put hardly exceeds 60 Mbps, which corresponds
roughly to half the maximum bandwidth calculated
for the entire system.

It should be noted that in most cases, the re-
ceiver was faster than the sender. The reasons for
this paradoxical behaviour are probably variations
in when timing starts, i.e. the receiver starts its
timer after receiving a small start datagram, which
happens at a time when the system is probably
already overloaded by the sender and the device
driver.1?

With single-copy

Again, much better performance was measured
when using single-copy, as shown in figure 12. For
datagram sizes below 1 kB, the throughput is worse

19 Also, the less efficient DMA burst mode of the receiver
now slows down both parties.

140 T Theoretical limit

120

100

80 -

60 -

40 Receiver

Data rate at socket in Mbps

Sender
20 |

32 64 128 256 512 1k 2k 4k 8k 16k
AALS payload size in bytes

Figure 11: Data rate of “raw” AALS traffic at the
socket interface when copying to and from receive
and send buffers.

than in the copying case, because of the increased
processing overhead. For 1 kB and 2 kB, through-
put is already increased, because single-copy in the
sender loads the system less. Finally, at 4 kB and
more, the receiver can benefit from single-copy too,
the memory bottleneck disappears, and data flows
at full speed. The system appears to be saturated
at a maximum receive speed of 115 Mbps.

140 ¢ Theoretical limit

120 -

100 -

80 Sender

60 Receiver 4

a0 |

Data rate at socket in Mbps

20 -

32 64 128 256 512 1k 2k 4k 8k 16k
AALS5 payload size in bytes

Figure 12: Data rate of “raw” AALSD traffic at the
socket interface when using single-copy.

5 Conclusion

Memory bandwidth has been identified as the main
bottleneck for high-speed networking on current
low-end systems and the use of single-copy has
been determined to be a straightforward yet ef-
fective way of overcoming this bottleneck in many

cases. More adaptive approaches promise to solve
also some of the problems associated with single-
copy (e.g. complexity and limited use).

We have implemented basic ATM support on
Linux and obtained experimental results for AALS
traffic. Even in this simple implementation, avoid-
ing to pass network traffic through an intermedi-
ate buffer has significantly improved the through-
put that can be achieved on low-end systems.

Bidirectional throughput in current low-end sys-
tems is still not sufficient to saturate the network,
and actual processing of bidirectional high-speed
streams would even require more throughput. Fur-
ther work is required to overcome these limitations.

References

[1] Druschel, P.; Abbott, M.; Pagals, M.; Pe-
terson, L. Network subsystems design,
ftp://cs.arizona.edu/xkernel/Papers/
analysis.ps, [EEE Network, vol. 7, pp. 8-17,
July 1993.

[2] Cole, R. G.; Shur, D.. IP over ATM: A
Framework Document (work in progress), Inter-
net Draft draft-ietf-atm-framework-doc-
04.ps, July 1995.

[3] Basu, A.; Buch, V.; Vogels, W.; von Eicken,
T. U-Net: A User-Level Network Interface
for Parallel and Distributed Computing (CS-
TR to appear), http://wuw.cs.cornell.edu/
Info/Projects/ATM/unet-tr.ps, Cornell Uni-
versity, April 1995.

[4] Efficient Networks, Inc. Midway (SBUS) ASIC
Specification, October 1994.

[6] Atkinson, R. Default IP MTU for use over
ATM AAL5, RFC1626, May 1994.

[6] Schnurer, G. Moderne PC-Bussysteme, c’t

10/93, pp. 110-119, October 1993.

[7] Schnurer, G. Wider den Flaschenhals, c’t 4/95,
pp- 128-136, April 1995.

[8] Clark, D. D.; Jacobson, V.; Romkey, J.; Salwen,
H. An Analysis of TCP Processing Overhead,
IEEE Communications Magazine, vol. 27, pp.
23-29, June 1989.

10

[9] Partridge, C. Gigabit Networking, Addison-
Wesley, October 1993.

[10] Steenkiste, P. A. A Systematic Approach to
Host Interface Design for High-Speed Networks,
IEEE Computer, vol. 27, pp. 47-57, March
1994.

[11] Braden, R.; Borman, D.; Partridge, C;
Computing the Internet Checksum, RFC1071,
September 1988.

[12] IEEE Standard for Information Technology.
Portable Operating System Interface (POSIX).

Part 1: System Application Program Interface
(API), IEEE, July 1994.

[13] Almesberger, W. Linuz ATM API,
ftp://lrcftp.epfl.ch/pub/linux/atm/
api/, June 1995.

[14] Fore Systems, Inc. Programmer’s Ref-
erence Manual for AALI Interface,
ftp://ftp.fore.com/pub/docs/aali.ps,
November 1994.

[15] NEC Corporation. uPD98401 local ATM SAR
chip user’s manual, IEU-1384, June 1994.

[16] Laubach, M. Classical IP and ARP over ATM,
RFC1577, January 1994.

[17] Heinanen, J. Multiprotocol Encapsulation over
ATM Adaptation Layer 5, RFC1483, July 1993.

