ATM on Linux*

Werner Almesberger

werner.almesberger@lrc.di.epfl.ch

Laboratoire de Réseaux de Communication (LRC)

EPFL, CH-1015 Lausanne, Switzerland

March 11, 1996

Abstract

Since the beginning of 1995, ATM support has been
developed for Linux. By now, Linux supports most
functionality that is required for state of the art
ATM networking. This article introduces to gen-
eral ATM concepts, presents the current status of
development on Linux, and outlines the future di-
rection ATM on Linux will take.

1 Introduction

ATM (Asynchronous Transfer Mode) [1]! is cur-
rently perceived as the most suitable technology for
modern high-speed multimedia networks; among
other reasons also because its architecture incor-
porates support for guaranteed Quality of Service
(QoS; bandwidth, end-to-end delay, etc.).

In order to create an ATM platform for re-
search and education, the Laboratoire de Réseaux
de Communication (LRC) of EPFL is developing
ATM support for Linux. In the first project phase,
device drivers for two ATM adapters were written,
and an extension of the socket API to support na-
tive ATM PVCs (“manually” configured connec-
tions) was designed and implemented.

Like the telephony network, ATM is connection-
oriented and therefore uses signaling to establish
(“to dial”) connections. In a second project phase,
the implementation was extended to support SVCs
(connections set up using signaling). Because the
protocols involved are rather complex, only a min-
imum of the functionality 1s implemented in the

kernel and a user-mode signaling demon performs
the actual protocol processing.

Since “native” ATM applications are rare and
will not be common until ATM is widely de-
ployed, ATM must coexist with “legacy” networks
(TCP/1IP, IPX, etc.). The IETF and ATM Forum
have defined “Classic TP over ATM” [3] and LAN
Emulation (LANE) [4, 5], respectively, to carry
legacy network traffic over ATM. ATM on Linux
also supports IP over ATM for PVCs and SVCs as
defined by RFC1577 [6] and others. Work is cur-
rently in progress at Tampere University of Tech-
nology (Finland) to also support LANE.

2 ATM concepts

ATM is designed for demanding data and multime-
dia communication, such as audio and video trans-
mission, and high-speed data transfer. The de-
sign of ATM has been strongly influenced by the
telecommunication community, and therefore ATM
is different from data network architectures like to-
day’s Internet in many ways. The probably most
important differences are the following:

e ATM is connection-oriented
e ATM supports a guaranteed QoS

e ATM clearly distinguishes between end sys-
tems and “the network”

*See also http://lrcwww.epfl.ch/linux-atm/ for the
latest status.
1. See [2] for a comprehensive overview of current ATM
technology.

All these concepts have their counterparts in the
telephony network: you have to establish a connec-
tion before you can communicate with the other
party, the QoS (i.e. that you get reasonable bi-
directional voice transmission) is guaranteed and
doesn’t depend on the network load, and your tele-
phone is very different from, say, a PBX.

Another difference is that ATM sends data in
tiny cells with a fixed size of only 53 bytes instead
of in variable-size frames. While this difference is
important at the lowest protocol layers, higher lay-
ers typically use larger units which are then trans-
formed from/to cells by a so-called “ATM adaption
layer” (AAL, [7]).

Figure 1 shows the structure of an ATM net-
work. The network itself consists of interconnected
switches. Two types of networks are distinguished:
“private” networks are typically company or cam-
pus networks, and “public” networks correspond
to what is offered by telephone carriers. The stan-
dardized interface between end systems (“hosts”)
and the ATM network is called the “user-network
interface” (UNT). The UNI defines several types of
physical media (i.e. multi-mode fiber, UTP-5, etc.),
many bit rates (ranging from only a few Mbps to
155.52 Mbps and more), line codings, configuration
and signaling protocols, etc. The current version
of the UNT is 3.1 [8], and version 4.0 is in the fi-
nal steps of standardization by ATM Forum at the
time of writing.

Public network

Figure 1: General structure of an ATM network

There are two mechanisms for setting up ATM
connections: the simple way is to configure each
switch individually (a bit like it was done in the
early days of telephony, where operators had to

physically connect calls on switchboards). Such
connections are called “permanent virtual circuit-
§” (PVCs). A more convenient way of setting up
connections it to “dial” them, which is called “sig-
naling” in ATM terminology. “Switched virtual cir-
cuits” (SVCs) are set up using signaling. ATM sig-
naling is based on the protocols DSS2 (see Q.2931
[9] for unicast and Q.2971 (not yet published) for
multicast), which in turn use the so-called SAAL
[10, 11, 12] to transport signaling messages.
Figure 2 illustrates ATM signaling: first, the
caller sends a SETUP message towards the destina-
tion (1). This message is processed at every single
switch. If the destination accepts the call, it returns
a CONNECT message (2). Again, this message is
seen by all switches. When the CONNECT mes-
sage reaches the destination, the data connection
is established and data can be exchanged between
both end systems (3).2 Note that the switches
don’t have to interpret what is sent on the data

connection.
Calling end system Called end system
1 \
SETUP SETUP SETUP
— —
sl Ot

CONNECT

CONN ECT/

Switch 3 2

Figure 2: Signaling message flows

3 ATM and the real world

While ATM purists may dream of a world where all
computers, TV sets, telephones, etc., are connected
to a big ATM cloud consisting of many intercon-
nected ATM networks, the real world is different:
connectionless TP networks without QoS concepts
play the dominant role, and “native” ATM appli-
cations are still a minority.

The first step in running IP over ATM is to have
means to carry IP packets on ATM. This is mainly
an encapsulation issue, defined in RFC1483 [13].
With this alone, IP can be run over ATM using
PVCs.

2. This is slightly simplified. UNI 3.x signaling also allows
an acknowledgement for the SETUP message and it requires
an acknowledgement for CONNECT.

For SVCs, also a way to resolve IP addresses to
ATM addresses is needed. The IETF currently uses
an approach called “classical TP over ATM” that is
based on an extension of ARP, called ATMARP
[6, 14]. ATMARP works like this (see also figure
3): each IP subnet has one ARP server (C). When
a client (A, B) starts, it registers its own IP and
ATM addresses at the ARP server (1). Now, if
client A wants to send data to client B, but i1t only
knows B’s IP address, it sends an ATMARP re-
quest (2) to the server. If the server knows B’s
addresses, it responds with an ATMARP reply (3),
containing B’s ATM address. A can now establish
an SVC to B and send data (4).

ATMARP server

Figure 3: ATMARP message flows

The TETF is working on extending classical TP
over ATM to support redundant ARP servers [15],
and there is also work in progress on a different
protocol called the “next hop resolution protocol”
(NHRP, [16]) that allows to establish direct ATM
connections even beyond IP subnets. There is also
an additional protocol to support IP multicast over
ATM [17].

Furthermore, there is work being done on inte-
grating IP mechanisms for negotiating QoS param-

eters, (e.g. RSVP [18]), with ATM [19, 20].

4 ATM on Linux details

This section describes the development process of
ATM on Linux and the current implementation.

Drivers

The first step in bringing ATM to Linux was to
find ATM adapters that offered sufficient perfor-
mance, that were available on the market, and for

which programming information was openly avail-
able. The search for such adapters turned out to
be quite difficult, mainly because at the end of 94,
many companies only had products for Sun’s SBus,
and very few adapters for the PCI bus were avail-
able on the market.

Eventually, we chose to use the products from
ZeitNet and from Efficient Networks. In spring
1995, a driver for the Efficient Networks EN155p
adapter was written, and a driver for the ZeitNet
ZN1221 adapter followed soon thereafter. Both
adapters are PCI bus cards and run ATM at 155
Mbps over multi-mode fiber.

ATM socket API

In order to send data over even only PVCs, a de-
vice driver alone isn’t enough, but also an API is
needed. Although ATM Forum is defining a se-
mantic APT [21], this description is far too gen-
eral for any concrete implementation. Therefore,
based on the BSD socket API, a native ATM API
was defined for PVCs and later for SVCs too [22].
This was done in parallel with device driver devel-
opment.

After some code was written to implement the
ATM-specific socket and protocol functions, which
interface between the common socket layer and the
device drivers [23], early tests were possible. (See
figure 4 for the protocol stack.) Since TP over
ATM encapsulation is comparably easy to imple-
ment, support for classical IP over ATM over PVC
was added shortly thereafter.

Figure 4 illustrates the Linux networking proto-
col stack. The “traditional” TP over Ethernet (or
SLIP, PPP, etc.) stack is on the right side, the
elements added by the ATM stack are on the left
side.

Single-copy

At that time, performance tests revealed that
throughput left much to be desired: instead of the
theoretical maximum of 135.6 Mbps for user data
with raw ATM, only a throughput of approximately
100 Mbps was obtained under ideal conditions. The
results for IP over ATM were much worse. The cul-
prit was easily found: because PCs tend to have a

3. This is only an interface to the signaling demon, which
performs the actual exchange of Q.2931 signaling messages.

Figure 4: Kernel parts of the Linux networking pro-
tocol stack

slow memory interface, the comparably large num-
ber of copy operations in the kernel created a bot-
tleneck.

The problem was resolved using a concept called
“single-copy”, where data is copied directly be-
tween user space and the device driver, without ad-
ditional copying to kernel buffers [24]. With single-
copy, transfer rates of up to 130 Mbps are possible
on Linux PCs with native ATM when using suffi-
ciently large datagrams.

Signaling

Since PVCs are too inflexible for most purposes,
the logical next step was to start to implement sig-
naling. ATM signaling mainly consists of the actual
signaling protocol DSS2 and the transport protocol
SSCOP [11]. Because those protocols are rather
complex but do most of their work only when con-
nections are established or torn down, we decided
to implement them in a demon in user mode.

Figure 5 illustrates a typical connection setup:
When started, the signaling demon creates a PVC
to communicate with the signaling entity in the net-
work (1), and a special SVC socket (2), which is
used to exchange signaling messages with the ker-
nel. A very simple protocol is used for the com-
munication between the kernel and the signaling
demon.

When an application requests a connection to a

Common socket interface §
=3 Applicati Signaling
pplication
SVC PVC INET o demon
sockets sockets sockets > (\ N
UNI 3.x TCP, UDP, ... 3 (¢
signaling? l ‘ 8 . ‘ 6 1
Transport TP T
c SvC svc* PvVC
protocols o
AALO AAL5 | Classical | Encap- X 2 5
1P sulation !
ATM device driver Ethernet
driver _\g
% to remote party to signaling
Z

Figure 5: Signaling procedure in the kernel

remote party (3), the kernel sends a message to
the signaling demon (4), which then performs the
signaling dialog with the ATM network (5). When
the connection is established, the signaling demon
indicates this to the kernel (6), which then sets up
the local part of the data connection (7) and notifies
the application (8). Incoming calls are handled in
a similar way.

Later on, a demon was also added for the “in-
terim local management interface” (ITLMT, [8]) pro-
tocol, which is used mainly for configuration pur-
poses, such as address auto-configuration. This de-
mon was contributed by Scott Shumate of the Uni-
versity of Kansas.

ATMARP

After basic SVC functionality was available, AT-
MARP had to be implemented to make use of SVCs
for TP over ATM too.
similar to signaling: a demon process implements
the ATMARP protocol and only a simple table for
ARP lookups is kept in the kernel, see figure 6.
When started, the ATMARP demon creates a
special socket (1) to communicate with the kernel.

The approach chosen is

When an application wants to send data to an 1P
destination (2) on the same TP subnet, TCP/TP
performs an ARP table lookup (3). If no ATM
connection exists for that destination yet, the ker-

[}
i
2 o ATMARP
B’; Application demon
)
2| f W
INET 1] SvC* SVC |5
I A
6 8
TCPIP 4
2
[} L /
X 3 N
ARP
IP 10
9 ATMARP table
~
X
% \
> to remote host

Figure 6: ATMARP procedure in the kernel

nel sends a message to the ATMARP demon re-
questing resolution of the TP address (4). If the
local machine acts as the ATMARP server for the
IP subnet, only a lookup in the address resolution
table of the ATMARP demon is performed.* Oth-
erwise, the ATMARP demon first searches its own
table, and if no entry is found, it sends a resolution
request to the ATMARP server. If the resolution
succeeds, a new SVC is opened for the destination
host (5) and it is entered in the kernel ATMARP
table (6). Now, IP packets can be sent to the re-
mote host (7).

Note that the ATMARP demon still owns the
SVC and that it can send ARP packets to the re-
mote host (8). Also, all incoming packets are exam-
ined and they’re either sent to the TCP/IP stack
(IP, 9) or to the ATMARP demon (ARP, 10).

5 Research uses

ATM on Linux support is developed at LRC as part
of our Web over ATM project.> One of the first
uses of ATM on Linux was for video demos, where
images were digitized on SPARCs and then sent
over ATM to a PC for displaying.

Because standard 1P currently supports neither
direct ATM end-to-end connectivity beyond subnet
boundaries nor negotiation of QoS aspects, LRC
has designed an extension of ATMARP called “ap-
plication requested IP over ATM” (AREQUIPA)
[25]. Arequipa allows applications to request a di-
rect ATM connection for their exclusive use with
TCP/IP protocols. A prototype of this will be im-
plemented on Linux.

Other groups have also identified Linux as an in-
teresting platform for advanced research projects,
e.g. the U-Net environment [26] is being ported to
Linux at Cornell University.

6 The future

The core functionality of ATM on Linux is expected
to become stable in spring ’96. Arequipa will also
be implemented during spring '96. At the time of
writing, several people are working on supporting
additional ATM adapters on Linux.

The version 4 of the UNI specification will bring
many new interesting features, such as an improved
multicast concept.® It is planned to implement at
least some of the signaling improvements of UNI
4.0 until fall *96.

We plan to have complete ATM support on Linux
ready for integration into the next stable release of
the “mainstream” Linux kernel at the beginning of

1997.
7 Conclusion
A brief introduction to the most important con-

cepts of ATM in today’s networking world was
given and it was illustrated that ATM on Linux

4. In addition to the entries that are also in the kernel
ATMARP table, the ATMARP demon also caches mappings

for hosts to which no connection exists.
5. Seehttp://lrcwww.epfl.ch/WebOverATH/
6. ATM on Linux doesn’t support ATM multicast yet.

supports all the respective mechanisms, and how

this is accomplished. For some particularly inter-

esting cases, details about the actual implementa-

tion were given.

At the end of this paper, some early research

applications and plans for future development were

described.

References

[1]

[2]

Le Boudec, J.-Y. The Asynchronous Trans-
fer Mode: a tutorial, Computer Networks and
ISDN Systems, Volume 24, Number 4, 1992.

Alles, A. Internetworking with ATM,
http://cell-relay.indiana.edu/
cell-relay/docs/cisco.html, Cisco Sys-
tems, May 1995.

Cole, R. G.; Shur, D. H.; Villamizar,
C. IP over ATM: A Framework Docu-

ment (work in progress), Internet Draft
draft-ietf-ipatm-framework-doc-07.ps,

February 1996.

Truong, H. L.; Ellington, W. W. Jr.; Le
Boudec, J.-Y.; Meier, A. X.; Pace, J. W. LAN
Emulation on an ATM Network, IEEE Com-
munications Magazine, May 1995, pp. 70-85.

The ATM Forum, Technical Committee.
LAN Emulation Quver ATM, Version 1.0,
ftp://ftp.atmforum.com/pub/specs/
af-lane-0021.000.ps.Z, The ATM Forum,
January 1995.

Laubach, M. Classical IP and ARP over ATM,
RFC1577, January 1994.

ITU-T Recommendation 1.363. B-ISDN ATM
adaptation layer (AAL) specification, I1TU,
1993.

The ATM Forum. ATM User-Network Inter-
face (UNI) Specification, Version 3.1, £tp://
ftp.atmforum.com/pub/UNI/ver3.1, Pren-
tice Hall, 1994.

ITU-T Recommendation Q.2931. Broadband
Integrated Services Digital Network (B-ISDN)
- Digital subscriber signalling system no. 2
(DSS 2) - User-network interface (UNI) -

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Layer 3 specification for basic call/connection

control, TTU, 1995.

ITU-T Recommendation Q.2100. B-ISDN
signalling ATM adaptation layer (SAAL)
overview description, ITU, July 1994.

ITU-T Recommendation Q.2110. B-ISDN
ATM adaptation layer — service specific con-
nection oriented protocol (SSCOP), ITU, July
1994.

ITU-T Recommendation Q.2130. B-ISDN sig-
nalling ATM adaptation layer — service specific
coordination function for support of signalling
at the user network interface (SSFC at UNI),
ITU, July 1994.

Heinanen, J. Multiprotocol Encapsulation over
ATM Adaptation Layer 5, RFC1483, July
1993.

Perez, Maryann; Liaw, Fong-Ching; Mankin,
Allison; Hoffman, Eric; Grossman, Dan; Malis,
Andrew. ATM Signaling Support for IP over
ATM, RFC1755, 1995.

Laubach, M.; Halpern, J. Classical IP and
ARP over ATM (work in progress), Internet
Draft draft-ietf-ipatm-classic2-01.txt,
February 1996.

Katz, D.; Piscitello, D.; Cole, B.; Lu-
ciani, J. V. NBMA Nezt Hop Resolution Pro-
tocol (NHRP) (work in progress), Internet

Draft draft-ietf-rolc-nhrp-07.txt, De-
cember 1995.

Armitage, G. Support for Multicast
over UNI 3.0/3.1 ‘based ATM Net-

works (work in progress), Internet Draft

draft-ietf-ipatm-ipmc-12.txt, February
1996.

Braden, R.; Zhang, L.; Berson, S.; Her-
zog, S.; Jamin, S. Resource ReSerVation

Protocol (RSVP) - Version 1 Functional
Specification (work in progress), Internet
Draft draft-ietf-rsvp-spec-10.ps, Febru-
ary 1996.

Borden, M.; Crawley, E.; Davie, B.; Batsell,
S. Integration of Real-time Services in an IP-
ATM Network Architecture, RFC1821, August
1995.

[20]

[21]

[25]

Birman, A.; Guerin, R.; Kandlur, D.
Support for RSVP-based Service over an
ATM Network (work in progress), Inter-

net Draft draft-birman-ipatm-rsvpatm-00.
txt, February 1996.

The ATM Forum, SAA API Ad-hoc Work
Group. Natwe ATM Services: Semantic De-
sceription Version1.0, ATM Forum contribu-

tion 95-0008, January 1996.

Almesberger, W. Linuz ATM API ftp:
//lrcftp.epfl.ch/pub/linux/atm/api/,
EPFL, November 1995.

Almesberger, W. Linuz ATM device driver in-
terface, ftp://lrcftp.epfl.ch/pub/linux/
atm/docs/, EPFL, January 1996.

Almesberger, W. High-speed ATM net-
working on low-end computer sys-
tems, Technical Report No 95/147,
ftp://lrcftp.epfl.ch/pub/linux/atm/
papers/atm_on_lowend.ps.gz, EPFL,
August 1995.

Almesberger, W.; Gauthier, E.; Le Boudec,
J.-Y.; Qechslin, P. Guaranteeing Qual-
ity of Service for the Web using Applica-
tion REQuested IP over ATM, Technical
Report No 95/158, http://lrcwww.epfl.
ch/WebOverATM/about_woa/bb96.ps, EPFL,
November 1995.

Basu, A.; Buch, V.; Vogels, W.; von Eicken,
T. U-Net: A User-Level Network Interface
for Parallel and Distributed Computing (CS-
TR to appear), http://www.cs.cornell.
edu/Info/Projects/ATM/unet-tr.ps, Cor-
nell University, April 1995.

