Arequipa: Using TCP/IP over ATM with quality of service is

simple. . . if you have ATM end-to-end

Werner Almesberger,
Jean-Yves Le Boudec?
Philippe Oechslin
ICA
EPFL,
Lausanne, Switzerland.

Abstract: We will present the design, implemen-
tation and our first experience with Arequipa. Are-
quipa is a method for providing the quality of ser-
vice of ATM to TCP/IP applications without re-
quiring any cooperation in the network between IP
and ATM. It does not need any modifications in
the ATM or IP networks; however, it requires end-
to-end ATM connectivity. We will describe how
we implemented our approach and made it pub-
licly available in Linux, how we applied it to the
Web, and finally, how we tested it on a European
ATM wide area network.

Keywords: Arequipa, Resource reservation,
ATM, TCP/IP, Quality of Service, QoS, Internet,
Linux, Web.

1. Introduction

Transferring multi-media data and other time-
critical data over networks may need a dependable
Quality of Service (QoS). This is the case for all sit-
uations where a minimum guaranteed bandwidth is
required. There are fundamentally two approaches
to provide Quality of Service:

— The network can be dimensioned in such a way
that traffic requiring quality of service is very un-
likely to ever exceed the available resources. This
normally requires that different priority levels be
used, with higher priority given to flows that are

*Contact author ; Leboudec@epfl.ch

expected to receive high quality of service. This
is the approach taken in proprietary architectures
such as [CIS 97]. The work currently underway at
the Internet Engineering Task Force (IETF) on the
topic of differentiated services [DIF] may also pro-
vide solutions in that direction.

— An alternative is to explicitly reserve resources
for specific data flows [ZHA 95]. This line of think-
ing finds its origin in the past experience in tele-
phony networks.

Our work is positioned within the second ap-
proach, namely the reservation approach.

One network technology for providing reserva-
tions is the Asynchronous Transfer Mode (ATM)
[LEB 92, ATM 96], which promises to provide a
scalable network architecture. The design of ATM
considered reservation mechanisms from the very
beginning. ATM networks therefore now offer re-
liable reservation mechanisms and well-understood
traffic management concepts. Corporate and pub-
lic ATM networks are already a reality in many
places. Applications that are specifically written
to use ATM, so-called native ATM applications, al-
ready guarantee end-to-end QoS today. However,
one major problem is that the vast majority of net-
worked applications is written to TCP /IP service
interfaces, not to ATM. If you want to use TCP/IP
applications in such environments, the standard so-
lution is to run IP over ATM; however, with IP over
ATM today, there is no simple way yet to benefit
from the end-to-end QoS guarantees of ATM.

Another network technology for providing reser-
vations could be based on enhancements to the
Internet. The current Internet does not provide
reservations, but the IETF identified the need for
supporting integrated services years ago [CLA 92,
BRA 94], and has been working on the design of
reservation mechanisms for TCP /IP. One major re-
sult of this activity are the Resource reSerVation
Protocol (RSVP [BRA 97]) and the corresponding
mappings to specific link layers, which are currently
still in draft status. This approach is based on
the concept of integration: network nodes (here:
routers) need to be upgraded in order to support an
additional set of functions required by the reserved
services. Once and if RSVP is deployed across the
Internet, it is possible to use TCP/IP applications
with some end-to-end quality of service.

In this article, we report on the feasibility of
an alternative approach, called Application RE-
Quested IP over ATM (Arequipa). Our purpose
with Arequipa is to show that providing the qual-
ity of service of ATM to TCP/IP applications
is straightforward with minimum changes to the
TCP/IP implementation in hosts. For two end-
systems to communicate using Arequipa, it is nec-
essary that they are connected (1) to a common
ATM network and (2) to the Internet or to the
same Intranet. However, there is no cooperation
required between the two types of networks. We
say that our approach is based on a concept of seg-
regation. Arequipa allows applications to establish
direct point-to-point end-to-end ATM connections
with a given QoS at the link level. These connec-
tions are used exclusively by the applications that
requested them. After setup of the Arequipa con-
nection (namely, the ATM connection that is used
for Arequipa), the applications can use the stan-
dard TCP/IP service to exchange data.

We made the conscious choice to let the user, or
the application, explicitly control the ATM connec-
tion. In our implementation, we support unspeci-
fied bit rate (UBR) and constant bit rate (CBR)
connections. In the latter case, the user or appli-
cation has to specify the requested peak cell rate.
The additional traffic or QoS parameters required
by the ATM signalling procedure are set transpar-
ently by our implementation. We believe that it is
reasonable to limit the information requested from
the user or application to just the choice mentioned

above, namely: UBR with no rate information, or
CBR with a specified peak cell rate. Our choice to
make the traffic specification visible to the appli-
cation is an essential part of Arequipa; we believe
that it will become more common in the future for a
large variety of applications.It is based on the con-
cept that QoS comes with a price, and therefore we
expect a dialogue between application and user to
take place before a guaranteed QoS is requested.
However, this does come with a drawback: existing
application code has to be modified. We did the
modification to a web client and a web browser, as
reported in Section 5. Similar work is underway
for video and audio conferencing applications. An
alternative to our approach is to let the operating
system choose the traffic parameters in lieu of the
application. We do not follow this approach with
Arequipa because we explicitly want to make qual-
ity of service visible to the end-user.

Considerable work has been devoted in the
Broadband ISDN context on defining an applica-
tion level signaling framework that would enable
applications to negotiate services and determine
service access points, depending on application pro-
files, terminal capabilities and service requirements
by end-users [RAC 92]. We claim that such efforts
are to a large extent redundant with the existing
base of Internet applications (such as the Web).
With Arequipa, it is possible for applications to
use the Internet for exchanging short messages for
purposes of service negotiation, address mapping,
authentication, and then set up ATM connections
as needed.

The article is structured as follows: section 2 de-
scribes mechanisms for running IP over ATM which
are either currently in use or which are being de-
fined by the IETF or the ATM Forum. In sections 3
and 4, we explain the concept of Arequipa and how
we implemented it in a UNIX-like operating sys-
tem. Section 5 introduces a way of using Arequipa
with the World-Wide Web (WWW, [BER 91]). In
section 6, we describe how we tested Arequipa to
transfer video data across Europe.

Although of high importance, the related issue of
pricing for ATM services is not considered in this

paper.

2. Transmitting IP Packets over ATM

The IETF and the ATM Forum have defined vari-
ous mechanisms that can be used to send IP traf-
fic over ATM, and they continue developing new
mechanisms and refining the existing ones. For
what could be called the second generation of such
mechanisms, both groups have joined forces and
are closely synchronizing their efforts. This section
briefly describes the current state of affairs.

2.1. Classical IP over ATM

The first standard developed by the IETF for run-
ning IP over ATM is the so-called classical IP over
ATM, defined mainly in RFC1577 [LAU 94], but
see also RFC1483 [HEI 93], RFC1755 [PER 95],
and RFC1932 [COL 96]. In that scheme, IP hosts
are grouped in Logical IP Subnets (LIS) which
are typically interconnected with IP routers. The
ATM network is treated much like a LAN and
hosts within a LIS can obtain each other’s ATM
addresses through an address resolution protocol
that maps IP addresses to ATM addresses. After
obtaining the address of a destination (within the
LIS), an ATM connection is established to it. If a
packet has to go to another host outside the LIS,
it is sent to a router which forwards it.

ATM network

Figure 1. Classical IP over ATM has to use
routers even if a direct ATM connection could be
established between communicating hosts

The advantage of this solution is that it works
in the same manner as existing IP networks, hence
the name. The disadvantage is that packets may be
sent through a set of routers and ATM connections

even if a direct ATM connection between the com-
municating hosts would be possible, as illustrated
in figure 1. Also, all the data flowing between two
machines typically uses the same ATM connection,
making it impossible to request a QoS for one spe-
cific data stream.

2.2. LAN Emulation

LAN Emulation (LANE, [ATM 95]) is ATM Fo-
rum’s equivalent to classical IP over ATM. Like
the latter, it limits direct ATM connections to a
comparably small cloud of systems, the so-called
Emulated LAN (ELAN). The main differences to
classical IP over ATM are that LANE uses IEEE
802 [IEE] MAC addresses instead of IP addresses,
and that it also includes support for multicast and
broadcast mechanisms.

LANE version 1 has no concept of honoring QoS
requirements of upper layers. Support for this is
planned for LANE version 2.

2.3. Next Hop Resolution Protocol

An improvement for classical IP over ATM is the
Next Hop Resolution Protocol (NHRP, [LUC 98]).
This protocol tries to resolve ATM addresses for
hosts which are not in the same LIS. With the ATM
address of a remote host, a direct ATM connection
can be established, bypassing intermediate routers
(see figure 2). In cases were the ATM address of a
remote host can be resolved, NHRP can thus pro-
vide end-to-end ATM connections.

ATM network

Figure 2. NHRP can establish direct end-to-end
ATM connections between hosts

However, NHRP has no mechanism to manage
the QoS of such connections. Data from different
applications may transit through the same end-to-
end ATM connection and the QoS an application
experiences depends on the traffic load generated
by the others.

2.4. Multiprotocol over ATM

Multiprotocol over ATM (MPOA, [ATM 97])
merges protocols developed by the IETF and the
ATM Forum, and extends them for using end-to-
end ATM connections also with non-IP protocols,
such as IPX. This includes mainly: NHRP and
the multicast mechanism described in RFC2022
[ARM 96]. In addition, MPOA has mechanisms
for flow classification, in order to decide automat-
ically at layer 3 when an ATM shortcut should be
established. It also supports the decoupling from
the data and control paths in intermediate systems.

Like LANE, phase 1 of MPOA does not consider
QoS, but phase 2 will.

2.5. RSVP

Current IP networks are designed to provide a best
effort service. This explains why the aforemen-
tioned solutions for running IP over ATM do not
pass the notion of QoS guarantees that ATM pro-
vides to the IP layer.

The standard approach for providing QoS guar-
antees in IP networks is the use of the Resource
Reservation Protocol (RSVP). RSVP is part of
the Integrated Services framework for the Internet,
currently being standardized. It typically hinges
on mechanisms like packet schedulers, which make
sure that data flows for which reservations have
been made get their share of bandwidth on links.
In this framework, RSVP is the signaling proto-
col, propagating information about available ser-
vices and requests for reservation along the data
path between sources and destinations.

2.6. Guaranteed Internet Bandwidth

A mechanism called “Guaranteed Internet Band-
width” (GIB [ARA 96]) approaches the QoS issues

by directing flows with QoS requirements over ded-
icated wide area network (WAN) connections (for
example ISDN or ATM). End systems use a special
signaling protocol to ask a GIB agent to change the
routing tables of the gateway routers. Limiting flow
selection to IP routes (namely, to the destination
IP address) allows the use of standard routers, but
makes the isolation of concurrent flows unreliable.

2.7. Discussion

The methods of running IP over ATM presented
above (except for GIB) have one thing in common:
They hide the fact that ATM is being used from the
applications. Since ATM is used below the IP layer
and IP has no notion of connections or QoS, the
interoperation mechanisms hide those properties of
ATM.

NHRP/MPOA and RSVP alleviates the problem
by setting up end-to-end connections below the IP
layer and by setting up reservations above it. This
approach has the advantage of being very general
but it adds some complexity and has the following
restrictions.

— In order for NHRP to be effective, it must be
deployed on all the nodes between communicating
hosts. If this is not the case, NHRP is not able to
create an end-to-end connection between the hosts
and RSVP will not be able to guarantee reserva-
tions on the entire path. RSVP can operate even if
some routers do not implement it, however, there is
no reservation on such paths. On an ATM WAN,
for example, end stations must rely on their ser-
vice providers to deploy NHRP and RSVP over all
parts of the WAN between them, in order to benefit
directly from ATM guaranteed QoS.

It is true that QoS guaranteeing services need only
be deployed on the congested parts of the network.
However, the congested parts are usually the back-
bones and long-distance links, which is where it is
most complicated to install new services. Arequipa
avoids this problem since it only needs to be in-
stalled on end systems.

— With public ATM connections being offered
by telecom companies, it is now possible to have
long distance end-to-end ATM connections, even

across country borders. Thus two hosts in two dis-
tant ATM WANs may be able to open end-to-end
ATM connections through their public network op-
erators. However, the IP backbone on the long
distance path between the WANs may well not be
running on ATM. Thus NHRP may not be able to
resolve the ATM addresses and to set up end-to-end
connections.

In contrast to all methods presented above, Are-
quipa aims at providing the QoS of ATM directly
to the application, and at letting the application
control its use. It is not clear at this time which
approach has superior benefits, but it should be
emphasized that they pursue different objectives.
Arequipa is based on network segregation, with in-
tegration in the hosts only; it is therefore less gen-
eral but also considerably simpler.

3. Arequipa

Arequipa allows applications to establish end-to-
end ATM connections under their own control, and
to use these connections at the lower protocol layer
to carry the IP traffic of specific sockets.

Unlike the connections set up by classical IP
over ATM or by LANE, Arequipa connections are
used exclusively by the applications that requested
them. The applications can therefore exactly de-
termine what QoS will be available to them.

ATM network

Figure 3. FEnd-to-end Arequipa connections for
three applications with QoS requirements

Figure 3 illustrates that Arequipa connections go
end-to-end and that each flow has its own connec-
tion.

In its broadest sense, Arequipa offers a means to
use properties of a network technology that is used
to transport another network technology (e.g., IP
on ATM) without requiring the explicit design and
deployment of sophisticated interworking mecha-
nisms and protocols.

Traditional protocol layering typically only al-
lows access to functionality of lower layers if up-
per layers provide their own means to express that
functionality. This approach can introduce signif-
icant complexity if the semantics of the respective
mechanism are dissimilar. Also, if the upper layer
fails to provide that interface, no direct access is
possible and the lower layer functionality may be
wasted or used in an inefficient way (e.g., if using
heuristics to decide on the use of extra features).
By allowing applications to control the lower layer,
Arequipa enables them to exploit those properties.

Note that Arequipa coexists with “normal” use of
the networking stacks, i.e., applications not requir-
ing Arequipa do not need to be modified and they
will continue to use whatever other mechanisms are
provided.

3.1. Exzample

Figure 4 illustrates the case of TCP/IP over ATM:
TCP connections between applications are built by
multiplexing their traffic over an upper layer (IP),
which is in turn carried by a lower layer (e.g., Eth-
ernet or ATM). Routers terminate lower layer seg-
ments in order to overcome scalability limitations
of either layer or of the interface between the layers.

Applications
Upper layer Upper layer
gl [~~~ 777 ™ (eg.IP)
N o A
Y S El
]]
Lower layer| | & L | X | Lower layer
(e.g. ATM) g g 1 (eg. ATM)

Figure 4. Communication without Arequipa

Figure 5 shows the same scenario, but this time
using only Arequipa. The applications still have
their TCP connections, but there is one dedicated
end-to-end (Arequipa) connection at the lower layer
for each of them.

Applications
Upper layer Upper layer
(eg.1P) (e.g.IP)
A
Y _
Lower layer | Lower layer
(e.g. ATM) = (e9. ATM)

Figure 5. Communication with Arequipa

Note that, although traffic between applications
using Arequipa does not pass the normal routed IP
path anymore, general IP connectivity may still be
necessary, e.g. for ICMP messages or for traffic of
other applications.

3.2. Applicability
Arequipa is applicable if the following two condi-
tions are met:

— applications can control “native” connections
over the lower layer communication media

— the upper and the lower layer (e.g., IP and
ATM) both allow communication between the same
end-points (or they share at least a useful common
subset of reachable end-points)

The next two conditions do not have to be met,
but without them the use of Arequipa may be ques-
tionable:

— the upper layer is multiplexed over the lower
layer (e.g., when using classical IP over ATM, all
IP traffic between a pair of hosts typically shares
the same ATM SVC)

— multiple lower layer connections are possible
between a pair of end-points

In order to simplify interaction with the protocol
stack, Arequipa assumes that data sent to destina-
tions for which no Arequipa lower layer connection
has been established will be delivered by some de-
fault mechanism.

Note that, despite its name (Application RE-
Quested IP over ATM), Arequipa is not limited
to IP and ATM only. The upper layer is typi-
cally IP or some similar protocol (e.g., IPX). The
lower layer can be ATM, Frame Relay, N-ISDN, etc.
Some of the advantages of using Arequipa in addi-
tion to the usual IP mechanisms are avoidance of
routing overhead and the possibility of using ded-
icated connections with “hard” quality of service
guarantees. This is of interest for flows with a life-
time which is long compared to the setup delay in-
curred by the lower layer.

3.3. API

The following primitives are available to applica-
tions using Arequipa:

int arequipa preset(int sd,const struct
sockaddr_atmsvc *addr,const struct atm_qos
*qos) ;

Presets the specified INET domain socket to use
a direct ATM connection to addr with the QOS pa-
rameters specified in qos. If the socket is already
connected, the ATM connection is set up immedi-
ately and data is redirected to flow over that con-
nection.

int arequipa_expect(int sd,int on);

Enables (if on is non-zero) or disables (if on is
zero) the use of Arequipa for return traffic on the
specified INET domain socket. When enabling the
use of Arequipa for return traffic, the Arequipa con-
nection on which the next data packet or incoming
connection for the socket is received is attached to
that socket.

int arequipa close(int sd);

Dissociates an Arequipa VC from the specified
socket. After that, traffic uses normal IP routing.
Note that the Arequipa connection is automatically
closed when the INET socket is closed.

3.4. Use of ATM user-to-user signaling
ATM connections for Arequipa use are used almost
exactly like connections for IP over ATM. However,
in order to avoid conflicts with the IP over ATM en-
tity, Arequipa connections are signaled in a slightly
different way, so the rule is as follows:

An Arequipa connection is signaled by using
the procedures and codings described in RFC1755
[PER 95], with the addition that the Broadband
High Layer Information (BHLI) information ele-
ment be included in the SETUP message, with the
following coding;:

bb_high layer_information

high layer_information_type
3 (vendor-specific
application id.)
high layer_information
00-60-D7
01-00-00-01

(EPFL OUI)
(Arequipa)

4. Implementing Arequipa in a Unix envi-
ronment

This section describes general aspects of imple-
menting Arequipa for IP over ATM in a socket-
based operating system kernel. The organization
of kernel internal data structures is assumed to be
similar to the one found in the networking part of
the Linux kernel [COX 96].

4.1. Kernel data structures without Are-

quipa

Figure 6 shows some of the kernel data structures
that are typically associated with a TCP socket
when not using Arequipa. Incoming data is demul-
tiplexed by the protocol stack (in figure 6, the circle
with TCP/IP) and queued on the socket. Outgoing
data is multiplexed by the protocol stack and sent
to the corresponding network interface.

Each data packet consists of a packet descriptor
and the actual data. The packet descriptor contains
information like the socket the packet belongs to,
the interface on which it was received, etc.

Most modern TCP/IP implementations also
cache routing information (including the network

Application

Socket descriptor

\ Protocol-
independent
Packet descriptor Protocol -
specific
*4—| Route cache
Data

Send/receive

**/ ueues
REE
X

Other sockets sockets
~Y e\

A\
TS

Network
interface

Other

Other
network
interfaces

Protocol stack

Figure 6. Kernel data structures of a TCP socket
(simplified)

interface) for each socket, so that route lookups
only need to be done when a new connection is
established or if the routing table is modified.

4.2. Data structures for incoming Arequipa
When using Arequipa, incoming packets are han-
dled as if they were using Classical IP over ATM:
after little or no ATM-specific processing, they are
passed to the protocol stack, which then performs
the usual demultiplexing, etc. The only significant
difference is that they are marked in order to iden-
tify them as originating from Arequipa (and from
which VC) when they arrive at the socket.

Figure 7 shows the data structures used when re-
ceiving from Arequipa. Note that all Arequipa VCs
on a system can use the same Arequipa pseudo-
interface.!

IThe term “pseudo-interface” is used to make it clear
that the Arequipa interface does not correspond to a physical
network interface (namely, hardware) although the protocol

Socket descriptor

N

Protocol-
independent

Protocol-
specific

Packet descriptor *

Data

}

Arequipa
pseudo-interface

* \Other ArequipaVCs
Arequipa Arequipa
VC VC

Figure 7. Arequipa for incoming data

Protocol stack

If the socket is not yet using Arequipa for sending
(namely, if it has no associated Arequipa VC) and
if it expects incoming Arequipa traffic (namely, if
arequipa_expect has been invoked with the on ar-
gument set to a non-zero value), the Arequipa VC
on which the packet has been received is attached
to the socket, so that outbound traffic uses the VC.

Note that if a packet is received over an Arequipa
VC, then it is possible that the VC no longer exists
at the time the data is delivered to the socket. It
is therefore necessary to verify the validity of the
incoming Arequipa VC before attaching it to the
upper layer socket (the normal closing procedures
only ensure that both layers are synchronized after
establishing the association).

stack interacts with it as if it did.

Socket descriptor
Protocol-

/
b specific

v

Data

Protocol-
independent

*4—|_ Route cache

Packet _—
descriptor

+ Protocol stack

Arequipa
pseudo-interface

Arequipa
¢ Ve

Figure 8. Arequipa for outgoing data

This can be implemented as follows:

— all incoming Arequipa VCs are registered in a
list (while they are dangling because they are not
attached)

— there is a global generation number, which is
incremented whenever a new Arequipa VC is cre-
ated. The generation number at the time of VC
creation is stored in the VC descriptor.

— the generation number of the Arequipa VC is
recorded in the descriptor of each data packet ar-
riving on that VC

A VC is still valid when the packet is delivered

to the socket only if a reference to that VC is on
the list and if its generation number matches the
one stored in the packet descriptor.

4.3. Data structures for outgoing Arequipa

When sending from an Arequipa socket, outbound
packets must be associated with the corresponding
Arequipa VC. As illustrated in figure 8, this is done
by sending them all through an Arequipa pseudo-
interface (a) which then looks up a back pointer (b)
to the originating socket in the packet descriptor.
The originating socket contains a pointer to the
descriptor (c) of the VC over which the data has to
be sent.

Note that an Arequipa connection may be re-
moved (e.g. because the remote party has closed
it, because of a network failure, etc.) without no-
tification at the socket. In this case, the Arequipa
route is removed and all outbound traffic is sent
with the “normal” IP mechanisms again.

4.4. Networking code changes

If using the approach outlined in the previous sec-
tions, the networking code has to be modified at
least at the following places:

— when creating a socket, the Arequipa informa-
tion (namely, if Arequipa is in use on that socket, if
the socket expects incoming Arequipa traffic, etc.)
needs to be initialized

— when connecting a UDP or TCP socket, a
cached Arequipa route exists if arequipa preset
was invoked before the connect system call. This
cached route must be preserved.

— when delivering data from Arequipa to a
socket, the Arequipa VC is attached to the socket
if

— the socket expects incoming Arequipa traffic,
and

— the socket does not currently use Arequipa,
and

— the Arequipa VC is not already attached to a
different socket

— if an incoming TCP connection is received on
a listening socket which expects incoming Arequipa
traffic, the new socket (the one returned by accept)
is also set to expect incoming Arequipa traffic and,
if the packet has arrived via Arequipa and if the
constraints listed above are met, the Arequipa VC
is attached to the new socket

— when an upper layer socket is closed, the un-
derlying Arequipa connection has to be closed too

— when forwarding IP packets, packets received
over an Arequipa connection must be discarded (see
[ALM 97], section 6)

Additional modifications may be necessary de-
pending on how per-socket route caches are invali-
dated. Also, socket destruction may be interrupt-
driven and may therefore need special care.

4.5. TCP issues

The use of TCP over Arequipa raises two specific
problems: (1) if the Arequipa connection is at-
tached after establishing the TCP connection, the
maximum segment size (MSS) of TCP may be very
small, typically increasing processing overhead. (2)
there are no generally useful semantics for listening
on a socket for which an Arequipa connection has
already been set up.

TCP implementations frequently limit the MSS
to a value which is based on the MTU of the IP
interface on which the connection is started. If con-
nections are set up over a media with an MTU size
that is small compared to the default IP over ATM
MTU size [ATK 94], that MSS will have to be kept
even if Arequipa is later used for that socket (see
RFC1122 [BRA 89], section 4.2.2.6). It is there-
fore recommended to invoke arequipa preset be-
fore connect and to invoke arequipa expect be-
fore 1listen.

Note that this is the only way to ensure that the
use of Arequipa is known at both ends when ex-
changing the initial SYN segments. Applications
that require the TCP listener to set up the Are-
quipa connection are therefore not able to ensure
the use of a larger MSS.

Although the API could allow associating an
Arequipa connection with a socket that is used to

listen for incoming connections, the usefulness of
such an operation is questionable.

Therefore, attempts to execute
arequipa preset on a listening socket or to
listen on a socket for which an Arequipa
connection already exists yield an error.

Further implementation details, including a step-
by-step description of the changes that were neces-

sary when adding Arequipa support to Linux, can
be found in [ALM 96a).

5. Transmitting Web documents with

guaranteed QoS

One of the most popular applications on IP net-
works is the World Wide Web (WWW, [BER 91]).
Its popularity stems from the fact that it allows
to access many different types of multimedia docu-
ments with a single intuitive user interface.

The Web is also a good example for an appli-
cation that can benefit from dependable QoS: if
the network can guarantee the required bandwidth,
data with real-time constraints (e.g., video clips)
can be displayed during reception and does not
have to be downloaded and replayed from a file,
as it is currently done. Also, users frequently have
loose time constraints (e.g., the time to download
stock exchange information). QoS guarantees en-
sure that users can obtain an adequate service and
won’t be subjected to the vagaries of best-effort.

5.1. Arequipa and the Web
In order to use Arequipa for Web applications,
three types of information are needed:

— The side that establishes the Arequipa connec-
tion must know the ATM address of the opposite
side.

— Likewise, the side that establishes the Are-
quipa connection must be able to specify the QoS
information.

— Finally, the side that establishes the TCP/IP
connection (normally using either TCP or UDP)
also needs to know the destination port.

10

We have chosen to let the Web server open Are-
quipa connections to the client, thus the server
needs to know the ATM address of the client. This
information can be sent conveniently as a pragma,
in the client’s request [BER 96]. This pragma can
serve another purpose, namely to indicate to the
server that the client is capable of using Arequipa.

The server also establishes the TCP /IP connec-
tion on which the document is transferred, so the
client needs to indicate the port on which it ex-
pects the data. For convenience, it also includes
the protocol type along with the port number.

For each document, we want to be able to specify
whether a connection with guaranteed QoS should
be used. If yes, we also want to specify what kind
of service and what QoS should be requested. To
specify this information, we use the notion of meta-
information for Web documents. Web servers are
able to store meta-information for each document,
either in the header of the document or in a sep-
arate file. We use this feature to store the ATM
service and the QoS parameters to be requested.

ATM address &
TCP/UDP port
-
Web Web
client server
-
Il

S

Document data

QoS meta-information

Figure 9. General information flow when using
Arequipa with the Web

Although not strictly required, the QoS informa-
tion is also useful to the client, so it is included in
the meta-information the server sends in response
to a request. Figure 9 illustrates the general infor-
mation flow.

Because a client may want to know the QoS at-
tributes of a document before downloading it with
Arequipa (e.g., because the client wants to ensure
that sufficient local resources are available to han-
dle the document, or because the user is charged
for ATM connections and therefore only wants to
use Arequipa for selected documents), we also need
a mechanism to obtain only the headers, which in-
clude the QoS meta-information.

While a client could always send a HEAD request
before issuing a GET, this would add one extra
round-trip time for every request, whether or not
the document in question is eligible for being trans-
ferred with Arequipa. This is clearly undesirable.
We therefore extend the semantics of GET to only
return the header of the document under the fol-
lowing conditions:

— the document has associated QoS information,
and

— the client indicated that it supports Arequipa
(by sending its ATM address), and

— the client did not include the destination port
number.

If the client decides to retrieve the document us-
ing Arequipa, it issues a second request, this time
with the destination port number. Note that a
client can avoid the extra round-trip if it has a
priori knowledge about the document (e.g., if the
headers are cached) or if it wants to use Arequipa
anyway, whatever the requested QoS is.

The extended behavior of the Web server is
shown in the pseudo-code below:

if (request_has_ATM_address &&
document_has_QoS_metainfo)
if (request_has_port_number)
send_document_using_arequipa();
else send_headers_only();
else /* non-QoS document or non-Arequipa
client */
send_document_standard_way() ;

Note that this extension is compatible to the
standard HTTP protocol and that Arequipa capa-
ble servers and client will interact seamlessly with
their standard counterparts.

5.2. HTTP extensions

When the client sends additional information re-
quired for Arequipa, it uses the following extra
header fields:

Pragma:

pub_address is the public E.164 address [ITU 91]
of the client. If the client has no such address, that
part of the field is empty. prv_address is the private
ATM NSAP address of the client. If the client has
no such address, that part of the field is left empty.
Presence of the ATM-address pragma indicates that
the client supports Arequipa and that it wishes to
make this fact known to the server.

ATM-address=pub_address. prv_address

Pragma: socket=protocol. port_number

protocol is typically TCP or UDP. port_number is
the corresponding port number or whatever infor-
mation the protocol may use to identify end-points.
Presence of the socket pragma indicates that the
client wishes to retrieve the requested document
over Arequipa, if the document is suitable for this,
and if the server supports Arequipa.

QoS meta-information is sent by the server by
adding the following new fields to the document
header:

ATM-Service: service

service is either UBR or CBR.
ATM-QoS-PCR: peak_cell_rate

peak_cell rate is the required peak cell rate in
cells per second. This field can be omitted when
using UBR.

5.3. Exzample

Figure 10 shows a sample HTTP dialog when using
Arequipa.

The client first sends its request without the port
information, so that the server only returns the
header. After asking the user for permission to re-
quest retrieval with Arequipa, the client sets up its
socket and repeats the request, this time with the
port information. The server can now establish the
Arequipa connection and sends the document with
the specified quality of service.

Browser Server

User clickson

document GET bat nan. npg

Pragma: ATM addr ess=495000. . .

Retrieves

document
ATM QoS- Servi ce: CBR meta-information
ATM QoS- PCR: 1000

Cont ent-type: video/ npeg

May prompt user
for confirmation

Cresates socket
ar equi pa_expect

listen GET bat man. npg

Pragma: ATM addr ess=495000. . .
Pragma: socket =TCP. 8090

Creates socket
ar equi pa_pr eset
batman.mpg connect
wite
accept

read

Figure 10. FEzample request/response flow when
using Arequipa on the Web

5.4. Arequipa with proxies

A proxy Web server (short “a proxy”) is a Web
server that requests documents from other Web
server on behalf of clients. Typical uses for proxies
include Web caches and application-level gateways
through firewalls.

When used in conjunction with a proxy, Are-
quipa can even be useful to client that are not di-
rectly connected to ATM: If the network between
the client and the proxy is dimensioned to offer
enough bandwidth so that congestion is very un-
likely (the typical situation in a LAN), it is suffi-
cient if Arequipa is used only over the — possibly
congested — WAN.

Figure 11 illustrates the use of Arequipa with a
proxy. The proxy uses Arequipa when transferring
documents over the WAN from remote servers. The
client uses the best-effort service of its LAN and
doesn’t even have to know about Arequipa.

The pricing question for cached documents is in-
teresting, but, as mentioned earlier, is outside the
scope of this paper. Note that in our example, the

12

Web proxy Web server
Web client \ K/\\f\\
LAN ATM WAN

e

f=— Best effort —=f*—— Arequipa —*1

Figure 11. Arequipa with o proxy Web server

cache is located on the firewall or on the LAN of a
company and all costs occurred by the users of the
cache will be billed to the company.

6. An Arequipa test in the WAN

In October 1996, a demonstration of Arequipa was
performed in an ATM WAN environment. This was
done as part of an interim presentation of the “Web
over ATM” project [OEC 96], which also comprises
the work on Arequipa. A number of other tests and
demonstrations of Arequipa were performed in 1997
as part of the European ACTS project.

The demonstration consisted of the transmission
of raw uncompressed live video over TCP with Are-
quipa across Europe (see figure 12). The purpose
of this demonstration was to show how bandwidth-
intensive applications can benefit from Arequipa.

Arequipa is part of the ATM-Linux distribution.
The test reported here used computers with an In-
tel processor, a PCI bus and ATM adapters from
two different vendors. The network used a number
of different ATM switches from various vendors.

6.1. The Network

The transmission was done from sites in Helsinki
(Finland) to EPFL in Lausanne (Switzerland), us-
ing the JAMES (Joint ATM Experiment on Eu-
ropean Services)? network. The partner sites in
Finland were Nokia and Telecom Finland.

2See http://btlabsi.labs.bt.com/profsoc/james/

AR
5 - d ; “‘ :\ fi
AT {]
BN oY h Helginki
MONN Ay 2N T L
AN % AR
3 -y .
) g ﬁu o-““ . <%
g ? Z{ A
.l 4',' ‘
4 P-‘,& %
) penhagen %
0 (7

R

Figure 12. Arequipa test in European WAN

In order to experiment with the setup without
wasting bandwidth in the international network,
preliminary testing was done with ETH in Ziirich
(Switzerland). An overview of the sites involved is
shown in figure 13.

The WAN connections with Finland were virtual
paths with a constant bit rate of 77200 cells per
second (corresponding to a user data rate of almost
30 Mb/s). The connection with ETH was a virtual
path with a bandwidth of approximately 34 Mb/s.

As described in section 5, the Web was used to
start and to control the video transmissions.

6.2. Results

The demonstration setup worked as expected and,
using the video application with traffic shaping set
to allow a user data rate of 27.3 Mb/s, a throughput
of approximately 25 Mb/s was obtained for video
traffic from Finland.

Also, the throughput for TCP over Arequipa
without application overhead was tested on the
34 Mb/s virtual path with ETH. This benchmark
was done with ttcp, a program that sends/receives

13

Telecom Finland
Nokia

EPFL ETHZ

Figure 13. Schematic overview of the network
structure

to/from memory without doing any further data
processing. With traffic shaping set to 33.3 Mb/s,
we obtained a throughput of up to 33.0 Mb/s.

While those results tend to indicate that our im-
plementation of Arequipa is able to sustain high
rates, it should be noted however that the goal of
Arequipa is not to obtain a high throughput. In
contrast, Arequipa allows an application to receive
a specified throughput, with hard guarantees, and
in most cases for a price. This was illustrated in
the demonstration using video images of a remote
clock, with the display sent over a TCP connection
using Arequipa. Depending on the selected peak
cell rate, the watch would either run too fast, too
slow, or just at about the right speed, obviously
something, you couldn’t obtain with the normal In-
ternet.

7. Conclusions and lessons learned

We have presented Arequipa, a method for pro-
viding the quality of service of end-to-end ATM
connections to TCP/IP applications. It makes it
possible to use ATM natively, in those cases where
end-to-end ATM connectivity exists, while preserv-
ing the TCP/IP environment, and with only mini-
mal changes to the application code. We have im-
plemented Arequipa in Linux, tested it extensively,
made it a part of the ATM-Linux distribution, and
published an Internet RFC documenting it. We
have described a way of using Arequipa with the
Web without sacrificing compatibility with stan-

dard Web browsers and servers. We have indicated
how Arequipa can be of use even for hosts not di-
rectly connected to ATM, using application level
proxies. Finally, we have presented the results of a
test of Arequipa in a European WAN setup.

The approach taken by Arequipa is that of ser-
vice integration in hosts only. It relies on the fact
that TCP/IP implementations do not follow a strict
layer separation: the IP destination tables in hosts
are typically set per socket pair, rather than per
IP destination address. This makes it possible to
select a given ATM connection for one specific ap-
plication flow, instead of for one IP destination ad-
dress. Service integration in hosts rather than in
the network makes it possible to use QoS immedi-
ately, since ATM commercial networks are already
in operation.

There is a number of lessons we learned from the
implementation and deployment of Arequipa, but
in this conclusion we would like to focus on one
major lesson. It has to do with the observation
that, contrary to our expectation when we started
the project in 1994, the penetration of end-to-end
ATM remains minuscule. One obvious reason is
the fact that ATM requires specific communica-
tion adapters, and cannot run today on the exist-
ing hosts, which, for the vast majority of them, use
Ethernet. However, our work on Arequipa may give
us some additional clues about the reasons for this
state of affairs. Certainly, the lack of ATM pene-
tration is not due to the difficulty of making QoS
available and visible to the user. Indeed, with Are-
quipa, we have a solution readily available for the
Unix environment, and we conjecture that porting
that solution to the market dominating operating
system would not be a major effort. We also do
not believe that the minor changes required to web
clients or servers are a major drawback, since the
lifetime of this type of software is usually shorter
than a year. If there would be a massive push to
obtain QoS in hosts, then the ATM penetration
would be higher. Therefore, we are lead to think
that making QoS visible to the user is an idea that
simply did not meet its market. Many users would
like to have it, but hardly any organization is will-
ing to invest in the network technology required to
support it. This also leads us to conjecture that
approaches based on RSVP that would attempt at
making QoS visible to the end user will equally suf-

14

fer from the same lack of penetration, because in-
troducing RSVP into the Internet is also a major
investment.

If we follow this line of thought, we conclude
that it may not be a good idea to let the QoS be
visible to the application, except maybe for niche
application settings where the investment is justi-
fied. Such settings are, for example, remote lec-
ture rooms used in medical teaching applications,
or video on demand over ATM. In contrast, in a
TCP/IP setting, it may be that what users need is
“a better service”, instead of, for example, “a guar-
anteed 250 kb/s flow”. This could be supported by
priority mechanisms, which are simpler to imple-
ment than reservations.

8.

Available software

An implementation of the Arequipa mechanisms is
part of the ATM on Linux [ALM 96b] distribution.
This distribution contains full source code for ker-
nel changes, system programs, and test applica-
tions. It can be found at http://lrcwww.epfl.
ch/linux-atm/

An application package for Arequipa is avail-
able on http://lrcwww.epfl.ch/arequipa/. It
includes the following components (with complete
source code):

— Web server and proxy server: CERN httpd
with Arequipa extensions

— Web browser: Arena with Arequipa extensions

— Video application: a modular video capture
and playback package

References

[ALM 96a] ALMESBERGER W, Arequipa: Design
and Implementation, ftp://lrcwww.epfl.ch/
pub/arequipa/aq_di-1.tar.gz, Technical Re-
port 96/213, DI-EPFL, November 1996.

[ALM 96b] ALMESBERGER W, ATM on Linux,

ftp://lrcftp.epfl.ch/pub/linux/atm/papers/
atm_on_linux.ps.gz, EPFL, March 1996.

[ALM 97] RFC2170: ALMESBERGER W, LE BOUDEC
J-Y, OEecHSLIN P, Application REQuested IP
over ATM (AREQUIPA), IETF, July 1997.

[ARA 96] ARANGO M, CoRTES M, Guaranteed Inter-
net Bandwidth, Proceedings of Globecom 96, vol.
2, pp 862-866, November 1996.

[ARM 96] RFC2022: ARMITAGE G, Support for Mul-
ticast over UNI 3.0/3.1 based ATM Networks,
IETF, November 1996.

[ATK 94] RFC1626: ATKINSON R J, Default IP MTU
for use over ATM AALS5, IETF, 1994.

[ATM 95] THE ATM ForuM, TECHNICAL CoOM-
MITTEE, LAN Emulation Over ATM, Ver-
sion 1.0, ftp://ftp.atmforum.com/pub/specs/
af-lane-0021.000.ps.Z, The ATM Forum, Jan-
uary 1995.

[ATM 96] THE ATM ForuM, TECHNICAL CoOM-
MITTEE, ATM User-Network Interface (UNI)
Signalling Specification, Version 4.0, ftp://ftp.
atmforum. com/pub/specs/af-sig-0061.000.ps,
The ATM Forum, July 1996.

[ATM 97] THE ATM ForuM, TECHNICAL COMMIT-
TEE, Multi-Protocol Over ATM, Version 1.0,
ftp://ftp.atmforum. com/pub/approved-specs/
af-mpoa-0087.000.ps, July 1997.

[BER 91] BERNERS-LEE T, World-Wide Web - Sum-
mary, http://www.w3.org/pub/WWW/Summary .
html, 1991.

[BER 96] RFC1945: BERNERS-LEE T, FIELDING R
T, FrysTYK NIELSEN H, Hypertext Transfer Pro-
tocol - HTTP/1.0, IETF, May 1996.

[BRA 89] RFC1122: BRADEN R, Requirements for In-
ternet Hosts — Communication Layers, IETF, Oc-
tober 1989.

[BRA 94] RFC1633: BRADEN B, CLARK D, SHENKER
S, Integrated Services in the Internet Architecture:
an Overview., IETF, June 1994.

[BRA 97) RFC2205: BRADEN BoB (ED), ZHANG L,
BERSON S, HERZOG S, JAMIN S, Resource ReSer-
Vation Protocol (RSVP) — Version 1 Functional
Specification, IETF, September 1997.

[CIS 97] Cisco, Advanced QoS Services for the
Intelligent Internet, http://www.cisco.com/
warp/public/732/net_enabled/qos_wp.htm,

May 1997.

[CLA 92] CLARK D, SHENKER S, ZHANG L, Support-
ing Real-Time Applications in an Integrated Ser-
vices Packet Network: Architecture and Mecha-
nisms, Proceedings of ACM SIGCOMM ’92, pp
14-26, August 1992.

15

[COL 96] RFC1932: CorE R G, SHUR D H, VIL-
LAMIZAR C, IP over ATM: A Framework Docu-
ment, IETF, April 1996.

[COX 96] Cox A, Network Buffers and Memory Man-
agement, Linuz Journal, issue 30, October 1996.

[DIF] IETF DIFFERENTIATED SERVICES (DIFFSERV)
WORKING GROUP, http://www.ietf.org/html.
charters/diffserv-charter.html

[HEI 93] RFC1483: HEINANEN J, Multiprotocol En-
capsulation over ATM Adaptation Layer 5, IETF,
1993.

[IEE] IEEE STD 802, IEEE Standards for Local and
Metropolitan Area Networks: Overview and Ar-
chitecture.

[ITU 91] ITU-T RECOMMENDATION E.164/1.331,
Numbering plan for the ISDN era, ITU, August
1991.

[LAU 94] RFC1577: LAUBACH M, Classical IP and
ARP over ATM, IETF, 1994.

[LEB 92] LE BouDpEc J-Y, The Asynchronous Trans-
fer Mode: a tutorial, Computer Networks and
ISDN Systems, Volume 24, Number 4, 1992.

[LUC 98] Luciani J V, Karz D, PisciTELLO D, COLE
B, DoraswamMy N, NBMA Next Hop Resolution
Protocol (NHRP), IETF, April 1998.

[OEC 96] OecHSLIN P, Web over ATM - Inter-
mediate Report, http://lrcwww/WebOverATM/
rapport/rapport.html, Technical Report 96/209,
EPFL, October 1996.

[PER 95] RFC1755: PEREZ M, Liaw F-C, MANKIN
A, HorrMAN E, GrRoOssMAN D, MaLis A, ATM
Signaling Support for IP over ATM, IETF, 1995.

[RAC 92] RACE ProJEcT MAGIC, Commission of
the European Communities, Final report, 1992.

[ZHA 95] ZHANG L, SHENKER S, CLARK D, HUITEMA
C, DEERING S, FERRARI D, Reservations or
No Reservations, ftp://ftp.parc.xerox.com/
pub/net-research/infocom95.html, Proceedings
of the Conference on Computer Communications
(IEEE Infocom), April 1995, panel-discussion
slides.

