Arequipa: Design and Implementation

Werner Almesberger
werner .almesberger@lrc.di.epfl.ch

Laboratoire de Réseaux de Communication (LRC)
EPFL, CH-1015 Lausanne, Switzerland

November 14, 1996

Abstract

After briefly introducing the fundamental concepts
of Arequipa, this paper first outlines an approach
for implementing Arequipa on a typical Unix sys-
tem and then gives a detailed description of its im-
plementation in ATM on Linux.

1 Introduction

Arequipa [1] is a mechanism for allowing applica-
tions to establish direct connections on lower pro-
tocol layers that support such functionality. These
connections are used exclusively by the applications
that requested them. Direct connections are for in-
stance useful for running Classical IP over ATM [2],
because the Classical IP over ATM model assumes
that IP packets are routed in the network, which
is normally less efficient than switching in a direct
ATM connection and which also makes it more dif-
ficult to use ATM’s support for quality of service
guarantees.

Although these problems are addressed and at least
partially solved by NHRP [3] and RSVP [4], Are-
quipa has the advantages of being very easy to im-
plement and of only requiring changes on the sys-
tems that want to use it, but not needing any mod-
ifications inside the network.

This document presents the general concept of Are-
quipa, describes how it can be implemented in a
typical Unix kernel, and finally discusses the con-
crete solution that has been implemented on Linux

[5].

Note that application issues are not addressed in
this document. Please see [6, 1] for a case study.
Also, only point-to-point end-to-end scenarios are
considered.

2 General concept

In its broadest sense, Arequipa offers a means to use
properties of a network technology that is used to
transport another network technology (e.g. IP on
ATM) without requiring the explicit design and de-
ployment of sophisticated interworking mechanisms
and protocols.

Traditional protocol layering typically only allows
access to functionality of lower layers if upper lay-
ers provide their own means to express that func-
tionality. This approach can introduce significant
complexity if the semantics of the respective mech-
anism are dissimilar. Also, if the upper layer fails
to provide that interface, no direct access is possi-
ble and the lower layer functionality may be wasted
or used in an inefficient way (e.g. if using heuristics
to decide on the use of extra features). By allowing
applications to control the lower layer, Arequipa
enables them to exploit those properties.

Note that Arequipa coexists with “normal” use of
the networking stacks, i.e. applications not requir-
ing Arequipa do not need to be modified and they
will continue to use whatever other mechanisms are
provided.

Example

A typical example is illustrated in figure 1: vir-
tual connections between applications (e.g. TCP)
are built by multiplexing their traffic over virtual
connections at the upper layer (e.g. IP), which is
in turn carried by a lower layer (e.g. Ethernet or
ATM). Routers terminate lower layer segments in
order to overcome scalability limitations of either
layer or of the interface between the layers.

Applications
Upper layer Upper layer
g [T~~~ ~°° = (eg. 1P
. . A
| S =
o o
Lower layer| | | X | Lower layer
(e.g. ATM) = = =1 (eg. ATM)

Figure 1: Communication without Arequipa.

Figure 2 shows the same scenario, but this time
using only Arequipa. The applications still have
their virtual connections, but there is one dedicated
end-to-end connection at the lower layer for each of
them. Furthermore, the virtual upper layer connec-
tion providing a general link between both end sys-
tems is no longer required (but may exist if needed
for other traffic).

Applications
Upper layer Upper layer
(eg.1P) (e.qg.IP)
A
y _
Lower layer — | Lower layer
(e.g. ATM) = (eg. ATM)

Figure 2: Communication with Arequipa.

Note that general upper layer connectivity may be
necessary even if always using Arequipa, e.g. when
running TCP/IP over Arequipa, ICMP messages
would normally be sent using the default mecha-
nisms.

Applicability

Arequipa is applicable if the following two condi-
tions are met:

e applications can control “native” connections
over the lower layer communication media

e the upper and the lower layer both allow com-
munication between the same endpoints (or
they share at least a useful common subset of
reachable endpoints)

Arequipa could also be applied if the next two con-
ditions are not met, but such an application would
be of questionable use:

e the upper layer is multiplexed over the lower
layer

e multiple lower layer connections are possible
between a pair of endpoints

In order to simplify interaction with the protocol
stack, Arequipa assumes that data sent to destina-
tions for which no Arequipa lower layer connection
has been established will be delivered by some de-
fault mechanism.

Motivation
The main motivations for using Arequipa are:

o if the “default” mechanism for transporting
the upper layer over the lower layer does not
use end-to-end lower layer connections, it may
be desirable to overcome this limitation in or-
der to reduce delays, improve availability, con-
trol privacy, etc.

e properties of the lower layer connection that
cannot be exploited by the upper layer can be
accessed directly if using Arequipa

Note that, despite its name (Application RE-
Quested IP over ATM), Arequipa is not limited to
IP and ATM only. The upper layer is typically IP
or some similar protocol (e.g. IPX). The lower layer
can be ATM, Frame Relay, N-ISDN, etc. Some of
the advantages of using Arequipa in addition to the
usual IP mechanisms are avoidance of routing over-
head and the possibility of using dedicated connec-
tions with “hard” quality of service guarantees.

API summary

The following primitives are available to applica-
tions using Arequipa (see [6] and [7] for details):

arequipa._preset establishes a lower layer connec-
tion for a given upper layer socket and asso-
ciates that connection with the socket

arequipa_expect enables or disables automatic
use of an incoming Arequipa connection for
outbound traffic, when data is delivered from
this connection to the socket

arequipa_close terminates the association be-
tween the upper layer socket and the dedicated
lower layer connection and closes the lower
layer connection

3 Arequipa with IP over ATM

This section describes general aspects of imple-
menting Arequipa for IP over ATM in a socket-
based operating system kernel. The organization
of kernel internal data structures is assumed to be
similar to the one found in the networking part of
the Linux kernel ([8]).

Kernel data structures without Are-
quipa

Figure 3 shows some of the kernel data structures
that are typically associated with a TCP socket
when not using Arequipa. Incoming data is demul-
tiplexed by the protocol stack (in figure 3, the circle
with TCP/IP) and queued on the socket. Outgoing
data is multiplexed by the protocol stack and sent
to the corresponding network interface.

Application

Socket descriptor

\ Protocol-
independent
Packet descriptor Protocol -
specific
*4—| Route cache
Data

* * Send/receive
ﬁ g/ queues
* * Otrlzer
er sockets sockets
Oth ket ‘\\\ H)//y
-~ ‘\ netwerk
by

Protocol stack .
interfaces

Network
interface

Figure 3: Kernel data structures of a TCP socket
(simplified).

Each data packet consists of a packet descriptor
and the actual data. The packet descriptor contains
information like the socket the packet belongs to,
the interface on which it was received, etc.

Most modern TCP/IP implementations also cache
routing information (including the network inter-
face) for each socket, so that route lookups only
need to be done when a new connection is estab-
lished or if the routing table is modified.

Data structures for incoming Are-
quipa

When using Arequipa, incoming packets are han-
dled like when using Classical IP over ATM: af-
ter little or no ATM-specific processing, they’re
passed to the protocol stack, which then performs
the usual demultiplexing, etc. The only significant
difference is that they are marked in order to iden-
tify them as originating from Arequipa (and from

which VC) when they arrive at the socket.

Application

Socket descriptor

N

Protocol-
independent

Protocol-
specific

Packet descriptor *

Data

}

Arequipa
pseudo-interface

Protocol stack

* Other ArequipaVCs
Arequipa Arequipa
VvC vC

Figure 4: Arequipa for incoming data.

Figure 4 shows the data structures used when re-
ceiving from Arequipa. Note that all Arequipa VCs
on a system can use the same Arequipa pseudo-
interface.!

If the socket is not yet using Arequipa for send-
ing (i.e. if it has no associated Arequipa VC)
and if it expects incoming Arequipa traffic (i.e. if
arequipa_expect has been invoked with the on ar-
gument set to a non-zero value), the Arequipa VC
on which the packet has been received is attached
to the socket, so that outbound traffic uses the VC.

IThe term “pseudo-interface” is used to make it clear
that the Arequipa interface does not correspond to a physi-
cal network interface (i.e. hardware) although the protocol
stack interacts with it as if it did.

Socket descriptor
Protocol-

/
b specific

v

Data

Protocol-
independent

*4—|_ Route cache

Packet _—
descriptor

+ Protocol stack

Arequipa
pseudo-interface

Arequipa
c vC

Figure 5: Arequipa for outgoing data.

The following subtle race condition needs to be con-
sidered: if a packet is received over an Arequipa
VC, that VC may no longer exist at the time the
data is delivered to the socket. It is therefore nec-
essary to verify the validity of the incoming Are-
quipa VC before attaching it to the upper layer
socket (the normal closing procedures only ensure
that both layers are synchronized after establishing
the association).

This can be implemented as follows:

e all incoming Arequipa VCs are registered in
a list (while they’re dangling, i.e. while not
attached)

e there is a global generation number, which is
incremented whenever a new Arequipa VC is
created. The generation number at the time
of VC creation is stored in the VC descriptor.

e the generation number of the Arequipa VC is
recorded in the descriptor of each data packet
arriving on that VC

A VC is still valid when the packet is delivered to
the socket only if that VC is still in the list and
if its generation number matches the one stored in
the packet descriptor.

Data structures for outgoing Are-
quipa

When sending from an Arequipa socket, outbound
packets must be associated with the corresponding
Arequipa VC. As illustrated in figure 5, this is done
by sending them all through an Arequipa pseudo-
interface (a) which then looks up a back pointer (b)
to the originating socket in the packet descriptor.
The originating socket contains a pointer to the
descriptor (c) of the VC over which the data has to
be sent.

Note that an Arequipa connection may be removed
(e.g. because the remote party has closed it, be-
cause of a network failure, etc.) without notifica-
tion at the socket. In this case, the Arequipa route
is removed and all outbound traffic is sent with the
“normal” TP mechanisms again.

Networking code changes

If using the approach outlined in the previous sec-
tions, the networking code has to be modified at
least at the following places:

e when creating a socket, the Arequipa informa-
tion (i.e. if Arequipa is in use on that socket, if
the socket expects incoming Arequipa traffic,
etc.) needs to be initialized

e when connecting a UDP or TCP socket, a
cached Arequipa route exists and must be re-
instated if arequipa preset was invoked be-
fore the connect system call

e when delivering data from Arequipa to a
socket, the Arequipa VC is attached to the
socket if

— the socket expects incoming Arequipa
traffic, and

— the socket does not currently use Are-
quipa, and

— the Arequipa VC is not already attached
to a different socket

e if an incoming TCP connection is received on
a listening socket which expects incoming Are-
quipa traffic, the new socket (the one returned
by accept) is also set to expect incoming Are-
quipa traffic and, if the packet has arrived via
Arequipa and if the constraints listed above
are met, the Arequipa VC is attached to the
new socket

e when an upper layer socket is closed, the un-
derlying Arequipa connection has to be closed
too

e when forwarding IP packets, packets received
over an Arequipa connection must be dis-
carded (see [6], section 6)

Additional modifications may be necessary depend-
ing on how per-socket route caches are invalidated.
Also, socket destruction may be interrupt-driven
and may therefore need special care.

TCP issues

The use of TCP over Arequipa raises two specific
problems: (1) if the Arequipa connection is at-
tached after establishing the TCP connection, the
maximum segment size (MSS) of TCP may be very
small, typically increasing processing overhead. (2)
there are no generally useful semantics for listening
on a socket for which an Arequipa connection has
already been set up.

TCP implementations frequently limit the MSS to
a value which is based on the MTU of the IP inter-
face on which the connection is started. If connec-
tions are set up over a media with an MTU size that
is small compared to the default IP over ATM MTU
size ([9]), that MSS will have to be kept even if Are-
quipa is later used for that socket (see RFC1122

[10], section 4.2.2.6). It is therefore recommended
to invoke arequipa preset before connect and to
invoke arequipa_expect before listen.

Note that this is the only way to ensure that the
use of Arequipa is known at both sides when ex-
changing the initial SYN segments. Applications
that require the TCP listener to set up the Are-
quipa connection are therefore not able to ensure
the use of a larger MSS.

Although the API could allow associating an Are-
quipa connection with a socket that is used to listen
for incoming connections, the usefulness of such an
operation is questionable.

Therefore, attempts to execute arequipa preset
on a listening socket or to listen on a socket for
which an Arequipa connection already exists yield
an error.

4 Arequipa on Linux

This section describes the changes that had to be
made to Linux with the ATM on Linux extensions
in order to support Arequipa. This description is
based on version 0.22 of ATM on Linux and the
2.0.14 kernel.

The explanations in the following sections are
meant to be read along with the corresponding
source code portions. They may be difficult to un-
derstand if read alone.?

Data structures

Small changes to several kernel data structures are
required (see also figure 6):

o the ATM VC descriptor (struct atm_vcc
in include/linux/atmdev.h) is extended
with fields to store a pointer to the up-
per layer socket (upper), a pointer to the
own socket (sock; for closing), pointers for
the list of dangling Arequipa VCs (ag-next
and aq-prev), and the generation number
(generation). These fields are initialized in

2The ATM on Linux distribution can be obtained from
ftp://lrcftp.epfl.ch/pub/linux/atm/dist/. The kernel
source tree can be obtained from ftp://ftp.funet.fi/pub/
Linux/kernel/src/v2.0/.

net/atm/common.c:atm_create and in net/
atm/arequipa.c:make_aq_vcc.

e two new ATM VC flags are added:
ATM_VF_AQREL is set if third party closing
is in progress. ATM_VF_AQDANG is set while the
VC descriptor is in the dangling Arequipa VC
list.

e a field for the generation number
(generation) is added to the socket
buffer descriptor (struct sk buff in

include/linux/skbuff.h).

e the protocol-specific socket descriptor (struct
sock in include/net/sock.h) is extended
with a field to store a pointer to that socket’s
copy of the Arequipa route (aq_route) and a
pointer to the lower layer socket (arequipa).
These fields are initialized in net/ipv4/af_
inet.c:inet_create.

Upper layer socket descriptor
Lower layer socket descriptor

T 7]
| arequipa -

Arequiparoute

Packet descriptor

gener
ation

V C descriptor

.
ag_prev —I

upper

sock
generation
ag_next j
1

Figure 6: Arequipa-specific fields in kernel data
structures.

sk->arequipa is NULL if no Arequipa VC is at-
tached. aq.route is NULL if the socket has
no attached Arequipa VC and if it doesn’t ex-
pect incoming Arequipa traffic. If aq route is

non-NULL, sk->aq_route == sk->ip_route_cache
means that an Arequipa VC is attached. Other-
wise, incoming Arequipa traffic is expected, but no
VC is attached yet.

Route cache handling

The route cache is handled in the following way:

e when an Arequipa VC is attached to a socket,
the route cache is initialized with a fake route
that points to the Arequipa pseudo-interface

e the Arequipa route is re-established after any
change to the route cache

e unnecessary route cache changes (e.g. after

routing table updates) are prevented

e when destroying a socket with an Arequipa
route cache entry, that entry is deallocated too

A template for the Arequipa route is contained
in net/atm/arequipa.c:arequipa_rt. Its rt_dev
entry it set to net/atm/arequipa.c:arequipa_
dev when Arequipa is initialized. In each copy of
the route, the source address (rt_src) is set to the
source address that would be used with the corre-
sponding non-Arequipa route.

Places where the route cache is initialized
(sk->ip.route_cache = rt;) are changed to call
a new function include/mnet/route.h:set_rt_
cache, which copies and adapts the route cache
template, and then releases the non-Arequipa route
(rt).

If connect is invoked after arequipa preset, the
Arequipa route will not contain a valid source ad-
dress and therefore needs to be updated. This is
done in net/ipv4/tcp.c:tcp_connect.

include/net/route.h:ip_check_route checks if
a given route is still valid and computes a new route
if it isn’t. For Arequipa, a test is added that always
returns the old route if it points to the Arequipa
pseudo-interface.

Arequipa routes are removed in net/ipvé4/af_
inet.c:destroy_sock. Note that instead of decre-
menting the reference count, as done for non-
Arequipa routes, the buffer space is freed.

Arequipa socket operations

Arequipa sockets are created by the application
with the library function arequipa preset or by
the Arequipa demon (a demon process that ac-
cepts incoming Arequipa calls and hands them
to the kernel) with the AREQUIPA_INCOMING ioctl.
INET domain sockets are prepared for using Are-
quipa with the library function arequipa expect.
arequipa.preset and arequipa_expect invoke
their corresponding counterpart in net/atm/
arequipa.c. AREQUIPA_INCOMING invokes net/
atm/arequipa.c:arequipa_incoming.

net/atm/arequipa.c:arequipa_expect either al-
locates space for the Arequipa route (if enabling)
or it frees that space (if disabling). In both cases,
additional sanity checks are performed.

net/atm/arequipa.c:arequipa_preset performs
the usual sanity checks and then invokes net/
atm/arequipa.c:arequipa_expect to allocate the
route cache space. After that, it tries to attach
the VC to the upper layer socket using net/atm/
arequipa.c:arequipa_attach_unchecked and fi-
nally enables Arequipa use (i.e. LLC/SNAP encap-
sulation) by invoking net/atm/arequipa.c:make_
aqg_vcc.

net/atm/arequipa.c:arequipa_incoming per-
forms some sanity checks and enables Arequipa use
by calling net/atm/arequipa.c:make_aq_vcc.

One special action of make_aq_vcc is to increment
the usage count of the file descriptor. This allows
the calling process to close the socket after indicat-
ing Arequipa use. The internal data structures of
that socket will continue to exist until the VC is
closed using fs/open.c:close_fp (see below).

Attaching Arequipa

Arequipa sockets are attached either explicitly by
calling arequipa_preset (see the previous section)
or implicitly by receiving a packet on a socket that
expects incoming Arequipa traffic.

Implicit attaching can occur when data is delivered
by TCP or by UDP (in net/ipv4/tcp_input.c:
tcp_rcv and net/ipv4/udp.c:udp_deliver, re-
spectively). In either case, net/atm/arequipa.c:
arequipa_attach is called, which first verifies that

the Arequipa VC is still valid (see section 3) and
then proceeds by invoking net/atm/arequipa.c:
arequipa_attach_unchecked (see above).

Another situation where implicit attaching occurs
is when a listening socket on which incoming Are-
quipa traffic is expected receives a SYN segment
that opens a new TCP connection (net/ipv4/tcp_
input.c:tcp_conn_request). In this case, the
buffer for the Arequipa route is allocated for the
new socket and net/atm/arequipa.c:arequipa_
attach is called.

Closing Arequipa

Closing an Arequipa VC may seem simple, but it
is in fact a rather tricky operation. Arequipa VCs
are closed in the following situations:

e the upper layer protocol destroys the socket

e the Arequipa VC is explicitly closed with
arequipa_close

e the Arequipa VC is closed by the remote party
or by the network

Closing by the upper layer is the most interesting
case, because it may be initiated by an interrupt,
e.g. when a TCP socket is closed by a timer event
after waiting 2-MSL in state TIME_WAIT. From an
interrupt, the Arequipa VC can be detached from
the upper-layer socket, but it can’t be closed, be-
cause 1) the SVC close operation may have to wait
for a confirmation from the signaling demon (see
also [11]) and 2) the ATM device driver’s close
function is allowed to sleep too (see [12]).

The approach chosen is therefore to only detach the
Arequipa VC from the upper layer socket but to
delegate the actual closing to a user-mode process.
The obvious choice for this process is the Arequipa
demon arequipad. The close request message can
be sent without sleeping, so this operation is pos-
sible even from interrupts.

The only remaining problem is that ordinary pro-
cesses can’t just close arbitrary sockets (which may
belong to other processes, etc.). This was solved
by adding an ioctl (AREQUIPA_CLS3RD) for closing
an ATM VC by the pointer to its descriptor. Invo-
cation of this ioctl is restricted to privileged users.

arequipad performs this third-party close proce-
dure whenever it receives a close request from the
kernel.

With these mechanisms in place, the three close
operations can be implemented as follows:

ar equj pad

-

AREQUI PA_CLS3RD
|

Kernel ¢

User space

destroy_sock atm.ioctl

net/ipvé4/ a_i net.c net/ at m/conmon. ¢

\
ar equi pa_cl ose

aqd_enq

ar equi pa_unuse ar equi pa_cl ose_vcc

net/at m ar equi pa. c

Figure 7: Closing of Arequipa sockets via a third
party.

When an upper layer socket is destroyed (net/
ipv4/af_inet.c:destroy_sock, which calls net/
atm/arequipa.c:arequipa_close), the Arequipa
VC is detached and marked as no longer in use
(net/atm/arequipa.c:arequipa_unuse). Unless
closing has already been initiated for some other
reason, a close request is sent to the Arequipa
demon (net/atm/arequipa.c:aqd_enq). Eventu-
ally, arequipad will receive the message and close
the VC (net/atm/arequipa.c:arequipa_close_
vee). The control flow is illustrated in figure 7.

The AREQUIPA CLOSE ioctl (which is called from
the library function arequipa_close) invokes
net/atm/arequipa.c:arequipa_close too, so the
same procedure as described above is followed.

If the remote party closes the VC (net/atm/
arequipa.c:arequipa_callback), we're already
in user mode (called from net/atm/signaling.
c:sigd_send). It is therefore possible to close
the VC immediately, unless a close operation is

already in progress. As usual, the Arequipa
VC is marked as unused (net/atm/arequipa.c:
arequipa_unuse) and detached from the upper
layer socket. If a close request is pending, we re-
turn and wait for the third-party close. Otherwise,
net/atm/arequipa.c:arequipa_close_vcc is in-
voked directly.

The actual close operation is performed by calling
fs/open.c:close_fp, which in turn invokes all the
protocol-specific functions.

Data forwarding

The data forwarding functions are very similar to
the ones used with Classical IP over ATM. In
fact, the functions for allocating memory for in-
coming packets (net/atm/ipcommon.c:atm_peek_
clip) and for freeing packets after sending them
(net/atm/ipcommon.c:atm_pop_clip) are identi-
cal.

The function to push incoming packets to
upper layers (net/atm/arequipa.c:atm_push_
arequipa) sets the originating interface of the
packet to the Arequipa pseudo-interface (this is
the marking mentioned in section 3) and copies
the generation number from the VC descriptor to
the packet descriptor. After that, it proceeds with
net/atm/ipcommon.h:ipcom_push.

The function that transmits outgoing packets (net/
atm/arequipa.c:arequipa_xmit) first performs
some sanity checks to discard packets from sockets
that no longer use Arequipa and packets sent to a
VC that is no longer available, determines the VC
by looking in the upper layer socket, and sends the
packet using net/atm/ipcommon.h:ipcom_xmit.

Miscellaneous kernel changes

Various minor changes are required to interface
with the Arequipa code. Among the changes are:

e the Arequipa part of the kernel is initial-
ized at boot time. This is done by calling
net/atm/arequipa.c:atm_init_arequipa
from net/atm/pvc.c:atmpvc_proto_init
(atmpvc_proto_init already performs similar
initialization tasks)

e the Arequipa-specific ioctls are added to net/
atm/common.c:atm_ioctl

e the AREQUIPA_PRESET ioctl needs to translate
the file descriptor to a pointer to the socket
descriptor. This is done with sockfd_lookup,
which also exists as an inline function in net/
socket.c

e Arequipa ioctls that are applied to the upper-
layer socket are handled in net/ipv4/af_
inet.c:inet_ioctl

e various additions to net/atm/proc.c for sta-
tus monitoring via /proc/atm/arequipa

e net/ipv4/ip_forward.c:ip_forward is
changed to reject IP packets received from
Arequipa and to send a “time exceeded”
ICMP

e a check to prevent listening on a socket with an
attached Arequipa VC is added to net/ipv4/
af_inet.c:inet_listen

User mode changes

The only changes in user mode are the creation
of a library libarequipa containing the Arequipa-
specific functions and the new demon process
arequipad.

The library functions are essentially wrappers
around ioctls which hide this “raw” interface. They
also hide non-obvious procedures like “closing” of
the Arequipa VC socket when the VC is estab-
lished.

arequipad has two purposes: it has to register a
SAP for incoming Arequipa connections and hand
them to the kernel, and it has to process third party
close requests. In addition to that, it could also en-
force policy restrictions on incoming Arequipa calls.

5 Conclusion

This paper briefly introduced the general concepts
of Arequipa, outlined one possible approach for im-
plementing Arequipa for IP over ATM on a Unix
system, and finally gave a detailed description of
what actually needed to be changed in ATM on
Linux when adding Arequipa support.

References

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[10]

[11]

Almesberger, Werner; Le Boudec, Jean-Yves;
Oechslin, Philippe. Application Requested IP
over ATM (AREQUIPA) and its Use in the
Web, Global Information Infrastructure (GII)
Evolution, pp. 252-260, I0OS Press, 1996.

RFC1577; Laubach, Mark. Classical IP and
ARP over ATM, IETF, 1994.

Luciani, James V.; Katz, Dave; Piscitello,
David; Cole, Bruce. NBMA Next Hop Resolu-
tion Protocol (NHRP) (work in progress), In-
ternet Draft draft-ietf-rolc-nhrp-10.txt,
October 1996.

Braden, Bob; Zhang, Lixia; Berson, Steve;
Herzog, Shai; Jamin, Sugih. Resource ReSer-
Vation Protocol (RSVP) — Version 1 Func-
tional Specification (work in progress), Inter-
net Draft draft-ietf-rsvp-spec-13.ps, Au-
gust 1996.

Almesberger, Werner. ATM on Linuz,
ftp://lrcftp.epfl.ch/pub/linux/atm/
papers/atm_on_linux.ps.gz, EPFL, March
1996.

RFC to appear; Almesberger, Werner; Le
Boudec, Jean-Yves; Oechslin, Philippe. Ap-
plication REQuested IP over ATM (ARE-
QUIPA), IETF, October 1996.

Almesberger, Werner. Linux ATM API, ftp:
//1lrcftp.epfl.ch/pub/linux/atm/api/,
EPFL, July 1996.

Cox, Alan. Network Buffers and Memory
Management, Linux Journal, issue 30, Octo-
ber 1996.

RFC1626; Atkinson, Randall J. Default IP
MTU for use over ATM AALS5, IETF, 1994.

RFC1122; Braden, R. Requirements for In-
ternet Hosts — Communication Layers, IETF,
October 1989.

Almesberger, Werner. Linux ATM internal
signaling protocol, ftp://lrcftp.epfl.ch/
pub/linux/atm/docs/, September 1996.

10

[12] Almesberger,

Werner. Linuz ATM device
driver interface, ftp://lrcftp.epfl.ch/
pub/linux/atm/docs/, January 1996.

