
A
tive Blo
k I/O S
heduling System (ABISS)

Giel de Nijs

giel.de.nijs�philips.
om

Werner Almesberger

werner�almesberger.net

Benno van den Brink

benno.van.den.brink�philips.
om

July 27, 2005

Abstra
t

The A
tive Blo
k I/O S
heduling System

(ABISS) is an extension of the storage subsys-

tem of Linux. It is designed to provide guar-

anteed reading and writing bit rates to appli
a-

tions, with minimal overhead and low laten
y.

In this paper, the various
omponents of

ABISS as well as their a
tual implementation

are des
ribed. This in
ludes work on the Linux

elevator and support for delayed allo
ation.

In a set of experimental runs with real-life

data we have measured great improvements of

the real-time response of read and write opera-

tions under heavy system load.

1 Introdu
tion

As storage spa
e is getting
heaper, the use of

hard disk drives in home or mobile
onsumer

devi
es is be
oming more and more mainstream.

As this
lass of devi
es like HDD video re
orders,

media
enters and personal audio and video

players were originally intended to be used by

one person at a time (or by multiple persons,

but wat
hing the same
ontent), performan
e

of the hard disk drives was not a real issue.

Adding more video sour
es to su
h a devi
e

(more tuners, for instan
e), however, will strain

the storage subsystem by demanding the re
ord-

ing of multiple streams simultaneously. As these

devi
es are being enabled with
onne
tivity op-

tions and be
ome inter
onne
ted through home

networks or personal area networks, a devi
e

should also be able to serve a number of au-

dio or video streams to multiple
lients. For

example, a media
enter should be able to pro-

vide a number of so-
alled media extenders or

renderers throughout the house with re
orded

ontent. Putting aside high bit rate tasks, even

simple low-end devi
es
ould bene�t from a very

low laten
y storage system.

Consumer ele
troni
s (CE) equipment has to

onsist of fairly low-
ost hardware and often

has to meet a number of other
onstraints like

low power
onsumption and low-noise operation.

Devi
es serving media
ontent should therefore

do this in an eÆ
ient way, instead of using per-

forman
e overkill to provide their soft-real-time

servi
es. To be able to a

omplish this sharing

of resour
es in an e�e
tive way, either the ap-

pli
ations have to be aware of ea
h other or the

system has to be aware of the appli
ations.

In this paper we will present the results of

work done on the storage subsystem of Linux,

resulting in the A
tive Blo
k I/O S
heduling

System (ABISS). The main purpose of ABISS

is to make the system appli
ation-aware by ei-

ther providing a guaranteed reading and writ-

ing bit rate to any appli
ation that asks for

it or denying a

ess when the system is fully

ommitted. Apart from these guaranteed real-

time (RT) streams, our solution also introdu
es

priority-based best-e�ort (BE) disk traÆ
.

The system
onsists of a framework in
luded

in the kernel, with a poli
y and
oordination

unit implemented in user spa
e as daemon. This

approa
h ensures separation between the kernel

infrastru
ture (the framework) and the poli
ies

(e.g. admission
ontrol) in user spa
e.

The kernel part
onsists mainly of our own

elevator and the ABISS s
heduler. The eleva-

tor implements I/O priorities to
orre
tly distin-

guish between real-time guaranteed streams and

ba
kground best-e�ort requests. The s
heduler

is responsible for timely preloading and bu�er-

ing of data. Furthermore, we have introdu
ed an

alternative allo
ation me
hanism to be more ef-

fe
tively able to provide real-time writing guar-

antees. Apart from these new features, some

minor modi�
ations were made to �le system

drivers to in
orporate our framework. ABISS

supports the FAT, ext2 and ext3 �lesystems.

ABISS works from similar premises as RTFS

[1℄, but puts less emphasis on tight
ontrol of

low-level operations, and more on
onvergen
e

with
urrent Linux kernel development.

In se
tion 2 a general overview of the ABISS

ar
hite
ture is given. Se
tion 3 des
ribes the

steps involved in reading and explains the solu-

tions in
orporated in ABISS to
ontrol the in-

volved laten
ies. The same is done for the writ-

ing pro
edure in se
tion 4. Performan
e mea-

surements are presented in se
tion 5, followed

by future work in se
tion 6 and the
on
lusions

in se
tion 7.

The ABISS proje
t is hosted at http://

abiss.sour
eforge.net.

2 Ar
hite
ture

An appli
ation reading or writing data from a

hard drive in a streaming way needs timely avail-

ability of data to avoid skipping of the playba
k

or re
ording. Disk reads or writes
an introdu
e

long and hard-to-predi
t delays both from the

drive itself as well as from the various operating

system layers providing the data to the appli-

ation. Therefore,
onventionally a streaming

appli
ation introdu
es a relatively large bu�er

to bridge these delays. The problem however is

that as the delays are theoreti
ally unbounded

and
an be quite long in pra
ti
e (espe
ially

on a system under heavy load), the appli
a-

tion
annot predi
t how mu
h bu�er spa
e will

be needed. Worst-
ase bu�ering while reading

means loading the whole �le into memory, while

a worst-
ase write bu�er should be large enough

to hold all the data whi
h is being written to

disk.

2.1 Adaptive bu�ering

If I/O priorities are introdu
ed and thus the

involved delays be
ome more predi
table, an

adaptive bu�ering s
heme may be a useful ap-

proa
h. The adaptive algorithm
an
ompen-

sate for disk laten
y, system speed and various

other variables. Still, an appli
ation will need

to know how mu
h
ompetition it will fa
e and

what the initial parameters should be. Also, the

algorithm would need some way to
orre
tly di-

mension the bu�er to be able to sustain some

ba
kground a
tivity.

Furthermore, some fairness against lower-

priority I/O should be maintained. If any appli-

ation
an raise its priority un
ontrolled, best-

e�ort traÆ

an be
ompletely starved. Too

many appli
ations doing too mu
h I/O at a high

priority
an also result in unbounded delays for

those appli
ations, simply be
ause there are not

enough system resour
es available. Clearly, ad-

mission
ontrol is needed.

ABISS implements su
h an adaptive bu�ering

algorithm as a servi
e for streaming appli
ations

on a relatively
oarse time s
ale; bu�er sizes are

determined when the �le is opened and may be

adapted when the real-time load
hanges (i.e.,

when other high-priority �les are opened). It

makes use of elevated I/O priorities to be able

to guarantee bounded a

ess times and a real-

time CPU priority to be able to more e�e
tively

predi
t the various operating system related de-

lays. Furthermore, the �le system meta-data is

a
hed. All delays are thus predi
table in non-

degenerate
ases and
an be
aught by a rela-

tively small bu�er on system level, outside of

the appli
ation.

Furthermore, an admission
ontrol system is

implemented in a user-spa
e daemon to make

sure no more
ommitments are made than the

available resour
es allow. It should be noted

that although our daemon o�ers a framework

for extensive admission
ontrol, only a very ba-

si
 system is available at the moment. The ar-

hite
ture of our framework as in
orporated in

the Linux kernel is shown in �gure 1.

Prior versions of ABISS used very �ne-grained

administration and measurement instrumenta-

tion to have very narrowly de�ned performan
e

hara
teristi
s. With time, these demands on

the underlying layers have gotten \softer". Sin
e

we are
overing larger parts of the system, lead-

ing to in
uen
es beyond our full
ontrol like the

allo
ation of disk spa
e, we
annot predi
t the

involved delays with su
h pre
ision as before.

2.2 Servi
e model

When an appli
ation requests the servi
es of

ABISS (we
all su
h an appli
ation an ABISS

user, or, more spe
i�
ally, an ABISS reader or

writer), it informs the system about both the bit

rate as well as the maximum read or write burst

size it is planning to use. A fun
tion whi
h opens

a �le and sets these parameters is available in the

ABISS middleware library. Given knowledge of

the general system responsiveness (I/O laten-

ies, system speed and ba
kground load), the

bu�er
an be
orre
tly dimensioned using these

variables. This information is also used in the

admission
ontrol s
heme in the daemon whi
h

oversees the available system resour
es.

As the behavior of a streaming appli
ation

is highly predi
table, a fairly simple prefet
her

an be used to determine whi
h data should be

available in the bu�er. The prefet
hing poli
y is

Hardware

User space

Kernel

etc.

MM,

Configuration interface (ioctl)

Page cache / Page I/O

ElevatorRequest queue(s) Block device layer

Block device driver

Scheduler API

Scheduler cores

Scheduler library

libabiss

Application Application

New

Changed

system

driver

File

POSIX API (VFS)

abissd

Figure 1: Global ABISS ar
hite
ture layout.

on
entrated in the ABISS s
heduler. A sepa-

rate worker thread performs the a
tual reading

of the data asyn
hronously, to keep the response

time to the appli
ation to a minimum.

We use the prefet
her me
hanism also when

writing, in whi
h
ase it is not only responsible

for the allo
ating and possibly loading of new

pages, but also for
oordinating writeba
k.

To minimize the response time during writ-

ing the operations whi
h introdu
e delays are

removed from the
alling path of the write op-

eration of the appli
ation. This is done by post-

poning the allo
ation, to make sure this I/O in-

tensive task is done asyn
hronously at a moment

the system has time to spare. In our \delayed

allo
ation" solution, spa
e for new data in the

bu�er does not get allo
ated until the moment

of writeba
k.

An overview of the above solutions is shown

graphi
ally in �gure 2. The te
hni
al implemen-

tations will be elaborated below.

2.3 Formal servi
e de�nition

The real-time servi
e o�ered to an appli
ation is

hara
terized by a data rate r and a maximum

burst read size b. The appli
ation sets the play-

out point to mark the lo
ation in the �le after

whi
h it will perform a

esses. As long as the

playout point moves at rate r or less, a

esses

to up to b bytes after the playout point will be

guaranteed to be served from memory.

If we
onsider reading a �le as a sequen
e of

n single-byte a

esses with the i-th a

ess at lo-

ation a

i

at time t

i

and with the playout point

set to p

i

, the operating system then guarantees

that all a

esses are served from memory as long

as the following
onditions are met for all i; j in

1; : : : ; n with t

i

< t

j

:

p

i

� p

j

< p

i

+ b+ r(t

j

� t

i

)

p

j

� a

j

< b+min(p

j

; p

i

+ r(t

j

� t

i

))

The infrastru
ture
an also be used to im-

plement a prioritized best-e�ort servi
e without

guarantees. Su
h a servi
e would ensure that, on

average and when measured over a suÆ
iently

long interval, a reader that has always at least

PROBLEM
disk reads can introduce long
and hard to predict delays

PROBLEM
prefetcher needs bounded
access time

SOLUTION
use elevated I/O priority

SOLUTION
use elevated CPU priority

SOLUTION
prefetch data

PROBLEM
meta−data lookups and writes
delay access

SOLUTION
mount with noatime

PROBLEM
allocation of disk space may
mean significant I/O

SOLUTION
allocate disk space
asynchronously

SOLUTION
cache meta−data

PROBLEM
regular writeback keeps up
poorly with delayed allocation

GOAL
Provide near−zero I/O time

SOLUTION
explicitly write back pages

Figure 2: Overview of the solutions in
orporated in ABISS.

one request pending, will experien
e better la-

ten
y and throughput, than any reader using a

lower priority.

3 Reading

When reading a page of �le data, the kernel

�rst allo
ates a free page. Then it determines

the lo
ation of the
orresponding disk blo
ks,

and may
reate so-
alled bu�er heads

1

for them.

Next, it submits disk I/O requests for the bu�er

heads, and waits for these requests to
omplete.

Finally, the data is
opied to the appli
ation's

bu�er, the a

ess time is updated, and the read

system
all returns. This pro
edure is illus-

trated in �gure 3.

If trying to read a page that is already present

in memory (in the so-
alled page
a
he), the

data be
omes available immediately, without

any prior I/O. Thus, to avoid waiting for data

to be read from disk, we make sure that it is

already in the page
a
he when the appli
ation

needs it.

3.1 Prefet
hing

We
an a

urately predi
t whi
h data will be

read, and
an therefore initiate the read pro
ess

ahead of time. We
all this prefet
hing. Pages

read in advan
e are pla
ed in a playout bu�er,

illustrated in �gure 4, in whi
h they are kept

Guaranteed slots

Marginal delay

I/O request enqueuing

Page allocation

Y N
?

P
refetching

Page is already in the page cache ?

Buffer head allocation

Location lookup When opening file

Marginal delay

I/O request completion

Data copy

Meta−data update

Application mlocks buffer

Mount with noatime

Disk I/O priorityI/O

Figure 3: The steps in reading a page, and how

ABISS
ontrols their laten
y.

until the appli
ation has read them. After that,

pages with old data are evi
ted from the playout

bu�er, and new pages with data further into the

�le are loaded. This
an also be thought of as a

bu�er sliding over the �le data.

The playout bu�er maintained by ABISS is

not a bu�er with the a
tual �le data, but an

1. A bu�er head des
ribes the status and lo
ation of

a blo
k of the
orresponding �le system, and is used to

ommuni
ate I/O requests to the blo
k devi
e layer.

upgrade existing request
Request new page or

Playout point

playout point
Application moves

Drop first page, shift window

Page arrives (in page cache)

Page cache

Playout buffer

Figure 4: Playout bu�er movement is initiated by

the appli
ation moving its playout point. More than

one page may be \in
ight" at on
e.

array of pointers to the page stru
tures, whi
h

in turn des
ribe the data pages.

Sin
e the maximum rate at whi
h the appli
a-

tion will read is known, we
an, given knowledge

of how long the data retrieval will take, size the

playout bu�er a

ordingly, as shown in �gure 5.

For this, we
onsider the spa
e determined by

the appli
ation, and the bu�ering needed by the

operating system to load data in time. The ap-

pli
ation requests the total bu�er size it needs,

whi
h
omprises the maximum amount of data it

will read at on
e, and the spa
e needed to
om-

pensate for imperfe
tions in its s
heduling. To

this, bu�ering is added to
over the maximum

time that may pass between initiating retrieval

of a page and its arrival, and the bat
hing de-

s
ribed in se
tion 3.4.

Prefet
hing is similar to the read-ahead pro-

ess the kernel performs regularly when sequen-

tially reading �les. The main di�eren
es are that

read-ahead uses heuristi
s to predi
t the appli-

ation behaviour, while appli
ations expli
itly

tell ABISS how they will read �les, and that

ABISS keeps a referen
e to the pages in the play-

out bu�er, so that they
annot be re
laimed be-

fore they have a
tually been used.

Prefet
hing is done in a separate kernel

thread, so the appli
ation does not get delayed.

For prefet
hing to work reliably, and without

onsuming ex
essive amounts of memory, data

retrieval must be relatively qui
k, and the worst-

ase retrieval time should not be mu
h larger

Application jitter

Read size or work area

Kernel latency

IO latency

Application−dependent buffering

Operating system and hardware
dependent buffering

Read batching

Figure 5: The playout bu�er of the s
heduler pro-

vides for bu�ering needs resulting from appli
ation

properties and from laten
ies
aused by the operating

system and the hardware.

than the typi
al retrieval time. In the following

se
tions, we des
ribe how ABISS a

omplishes

this.

3.2 Memory allo
ation

When reading a page from disk, memory allo
a-

tion happens mainly at three pla
es: (1) when

allo
ating the page itself, (2) when allo
ating

the bu�er heads, and (3) when allo
ating disk

I/O request stru
tures.

The �rst two are regular memory allo
ation

pro
esses, and we assume that they are not

sour
es of delays signi�
antly larger than disk

I/O laten
y.

2

The number of disk I/O request stru
tures

is limited by the maximum size of the request

queue of the
orresponding devi
e. If the re-

quest queue is full, pro
esses wanting to enqueue

new requests have to wait until there is room in

the queue. Worse yet, on
e there is room, all

pro
esses waiting for it will be handled in FIFO

order, irrespe
tive of their CPU priority.

In order to admit high priority I/O requests

(see below) instantly to the request queue, the

ABISS elevator
an be
on�gured to guarantee

a
ertain number of requests for any given pri-

ority. Note that this does not a�e
t the a
tual

allo
ation of the request data stru
ture, but only

whether a pro
ess has to wait before attempting

an allo
ation.

2. In fa
t, they are mu
h shorter most of the time,

ex
ept when syn
hronous memory re
laim is needed.

Application playout point

Beginning of playout buffer

Page is no longer used

Page is accessible and up to date

Page is being loaded

Pending read request

Advances at the requested rate (or less)

Moves freely

Figure 6: Playout bu�er movement is
ontrolled by

the kernel, and tra
ks the position of the playout

point,
ontrolled by the appli
ation.

3.3 Prioritized disk I/O

The key purpose of ABISS is to hide I/O laten
y

from appli
ations. This is a

omplished mainly

through the use of prefet
hing. Now, in order to

make prefet
hing work properly, we also have to

limit the worst-
ase duration

3

of I/O requests,

independent from what
ompeting appli
ations

may do.

ABISS a
hieves isolation against appli
ations

not using ABISS by giving I/O requests issued

by the prefet
her thread a higher priority than

requests issued by regular appli
ations. The

priorities are implemented in the elevator:

4

re-

quests with a high priority are served before any

requests with a lower priority. We
urrently use

an elevator spe
i�
ally designed for ABISS. In

the future, we plan to migrate to Jens Axboe's

more versatile time-sli
ed CFQ elevator [2℄.

An interesting problem o

urs if a page enters

an ABISS playout bu�er while being read at a

low priority. In order to avoid having to wait

until the low priority requests get pro
essed, the

prefet
her upgrades the priority of the requests

asso
iated with the page.

We have des
ribed the ABISS elevator in more

detail in [3℄.

ABISS users may also
ompete among ea
h

other for I/O. To ensure that there is enough

time for requests to
omplete, the playout bu�er

must be larger if more ABISS users are admit-

ted. Dynami
ally resizing of playout bu�ers is

urrently not implemented. Instead, the initial

playout bu�er size
an be
hosen su
h that it

is suÆ
iently large for the expe
ted maximum

ompeting load.

3.4 Rate
ontrol

Movement of the playout bu�er is limited to

the rate the appli
ation has requested. Appli-

ation and kernel syn
hronize through the so-

alled playout point: when the appli
ation is

done a

essing some data, it moves the playout

point after this data. This tells the kernel that

the playout bu�er
an be shifted su
h that its

beginning lines up with the playout point again,

as shown in �gure 6.

We require expli
it updating of the playout

point, be
ause, when using read and write, the

�le position alone may not give an a

urate in-

di
ation of what parts of the �le the appli
ation

has �nished reading. Furthermore, in the
ase of

memory-mapped �les, or when using pread and

pwrite, there is no equivalent of the �le position

anyway.

The ABISS s
heduler maintains a
redit for

playout bu�er movements. If enough
redit is

available to align the playout bu�er with the

playout point, this is done immediately. Oth-

erwise, the playout bu�er
at
hes up as far as

it
an until all
redit is
onsumed, and then

advan
es whenever enough new
redit be
omes

available. This is illustrated in �gure 7.

The
redit allows the playout bu�er to \
at
h

up" after small distortions. Its a

umulation is

apped to the bat
h size des
ribed below, plus

the maximum laten
y for timer-driven playout

bu�er movement, as shown in �gure 8.

If the �le was read into the playout bu�er

one page at a time, and there is also
on
ur-

rent a
tivity, the disk would spend an inordinate

amount of time seeking. Therefore, prefet
hing

only starts when a
on�gurable bat
hing thresh-

old is ex
eeded, as shown in �gure 9. This

threshold defaults to ten pages (40 kB).

Furthermore, to avoid interrupting best-e�ort

a
tivity for every single ABISS reader, prefet
h-

ing is done for all �les that are at or near (i.e.,

half) the bat
hing threshold, as soon as one �le

rea
hes that threshold. This is illustrated in �g-

ure 10.

3.5 Wrapping up

Copying the data to user spa
e
ould
onsume

a signi�
ant amount of time if memory for the

bu�er needs to be allo
ated or swapped in at

that time. ABISS makes no spe
ial provisions

3. We ignore degenerate
ases, su
h as hardware errors.

4. Also
alled \I/O s
heduler". In this paper, we use

\elevator", to avoid
onfusion with the CPU s
heduler

and the ABISS s
heduler.

Add credit
at rate r

Credit

Set timer when credit
reaches one page

One page

Credit limit

No

Yes

T
im

er
 e

xp
ire

s

Yes

No
Done

> batch ?
PP aheadNo

Yes

Playout point moves

than the batching threshold
Playout points differ by more

Done

Reduce credit by one
page and move buffer

Reduce credit

Set timer

credit >=
one page ?

Load more ?

Figure 7: Playout bu�er movement is limited by a
redit that a

umulates at the rate requested by the

appli
ation, and whi
h is spent when the playout bu�er advan
es through the �le.

for this
ase, be
ause an appli
ation
an eas-

ily avoid it by mlo
king this address region into

memory.

Finally, the �le system may maintain an a
-

ess time, whi
h is updated after ea
h read op-

eration. Typi
ally, the a

ess time is written

ba
k to disk on
e per se
ond, or less frequently.

Updating the a

ess time
an introdu
e parti
-

ularly large delays if
ombined with journaling.

Sin
e ABISS
urrently provides no me
hanism

to hide these delays, �le systems used with it

should be mounted with the noatime option.

4 Writing

When writing a page, the overall pro
edure is

similar to reading, but a little more
ompli
ated,

as shown in �gure 11: if the page is not already

present in the page
a
he, a new page is allo-

ated. If there is already data for this page in

the �le, i.e., if the page does not begin beyond

the end of �le, and does not in its entirety
oin-

ide with a hole in the �le, the old data is read

from disk.

If we are about to write new data, the �le

system driver looks for free spa
e (whi
h may

involve lo
king and reading �le system meta-

data), allo
ates it, and updates the
orrespond-

ing �le system meta-data.

Next, the data is
opied from the user spa
e

bu�er to the page. Finally, the status of the

bu�er heads and the page is set to \dirty" to

indi
ate that data needs to be written ba
k to

disk, and to \up to date" to indi
ate that the

bu�ers, or even the entire page, are now �lled

with valid data. Also �le meta-data, su
h as the

�le size, is updated.

At this point, the data has normally not been

written to disk yet. This writeba
k is done asyn-

hronously, when the kernel s
ans for dirty pages

to
ush.

If using journaling, some of the steps above

involve a

esses to the journal, whi
h have to

omplete before the write pro
ess
an
ontinue.

If overwriting already allo
ated regions of the

�le, the steps until after the data has been

opied are the same as when reading data, and

ABISS applies the same me
hanisms for
ontrol-

ling delays.

4.1 Delayed allo
ation

When writing new data, disk spa
e for it would

have to be allo
ated in the write system
all. It

is not possible to do the allo
ation at prefet
h

time, be
ause this would lead to in
onsistent �le

state, e.g., the nominal end-of-�le
ould di�er

1 jiffie

Timer latency

Work queue latency

Batch size

1 jiffie

Timer is set

C
re

di
t l

im
it

Maximum delay
between adding
work queue
entry and credit
calculation

Minimum duration
of wait

Maximum delay between
timer tick and addition of
work queue entry

Credit is updated

Figure 8: The limit keeps the s
heduler from a

u-

mulating ex
essive
redit, while allowing it to
om-

pensate for the delays o

urring when s
heduling op-

erations.

from the one e�e
tively stored on disk.

A solution for this problem is to defer the al-

lo
ation until after the appli
ation has made the

write system
all, and the data has been
opied

to the page
a
he. This me
hanism is
alled de-

layed allo
ation.

For ABISS, we have implemented experimen-

tal delayed allo
ation at the VFS level: when a

page is prefet
hed, the new PG_delallo
 page

ag is set. This
ag indi
ates to other VFS fun
-

tions that the
orresponding on-disk lo
ation of

the data is not known yet.

Furthermore, PG_delallo
 indi
ates to mem-

ory management that no attempt should be

made to write the page to disk, e.g., during nor-

mal writeba
k or when doing a syn
. If su
h a

writeba
k were to happen, the kernel would au-

tomati
ally perform the allo
ation, and the page

would also get lo
ked during this. Sin
e allo
a-

tion may involve disk I/O, the page may stay

lo
ked for a
omparably long time, whi
h
ould

blo
k an appli
ation using ABISS that is trying

to a

ess this page. Therefore, we ensure that

the page does not get lo
ked while it is still in

any playout bu�er.

The
ode to avoid allo
ation is mainly in fs/

buffer.
, in the fun
tions __blo
k_
ommit_

write (we set the entire page dirty),
ont_

prepare_write and blo
k_prepare_write (do

nothing if using delayed allo
ation), and also in

mpage_writepages in fs/mpage.
 (skip pages

A

B

A

B

Position of disk head

Seek

Position of disk head

Read

Time

Time

Figure 9: Reading a �le (A) with ABISS one page

at a time (above) would
ause many seeks, greatly

slowing down any
on
urrent best-e�ort reader (B).

Therefore, we bat
h reads (below).

marked for delayed allo
ation).

Furthermore,
ont_prepare_write and

blo
k_prepare_write may now see pages that

have been prefet
hed, and thus are already

up to date, but are not marked for delayed

allo
ation, so these fun
tions must not zero

them.

The prefet
hing is done in abiss_read_page

in fs/abiss/s
hed_lib.
, and writeba
k in

abiss_put_page, using write_one_page.

Support for delayed allo
ation in ABISS
ur-

rently works with FAT, ext2, and ext3 in data=

writeba
k mode.

4.2 Writeba
k

ABISS keeps tra
k of how many playout bu�ers

share ea
h page, and only
lears PG_delallo

when the last referen
e is gone. At that

time, the page is expli
itly written ba
k by the

prefet
her. This also implies allo
ating disk

spa
e for the page.

In order to obtain a predi
table upper bound

for the duration of this operation, the prefet
her

uses high disk I/O priority.

We have tried to leave �nal writeba
k to the

regular memory s
an and writeba
k pro
ess of

the kernel, but
ould not obtain satisfa
tory per-

forman
e, resulting in the system running out

of memory. Therefore, writeba
k is now done

expli
itly when the page is no longer in any

ABISS playout bu�er. It would be desirable to

avoid this spe
ial
ase, and more work is needed

to identify why exa
tly regular writeba
k per-

formed poorly.

B

B

A

C

A

C

Position of disk head

Position of disk head

Time

Time

Figure 10: If there are multiple ABISS readers (A

and C), further seeks
an be avoided if prefet
hing

is syn
hronized (below).

4.3 Reserving disk spa
e

A severe limitation of our experimental imple-

mentation of delayed allo
ation is that errors,

in parti
ular allo
ation failures due to la
k of

disk spa
e or quota, are only dete
ted when a

page is written ba
k to disk, whi
h is long after

the write system
all has returned, indi
ating

apparent su

ess.

This
ould be solved by asking the �le system

driver to reserve disk spa
e when
onsidering a

page for delayed allo
ation, and using this reser-

vation when making the a
tual allo
ation. Su
h

a me
hanism would require �le system drivers

to supply the
orresponding fun
tionality, e.g.,

through a new VFS operation.

There is a set of extensions for the ext3 �le

system by Alex Tomas [4℄, whi
h also adds,

among other things, delayed allo
ation, along

with reservation. Unfortunately, this implemen-

tation is limited to the ext3 �le system, and ex-

tending it to support the prefet
hing done by

ABISS would require invasive
hanges.

More re
ent work on delayed allo
ation with

fewer dependen
ies on ext3 [4℄ may be
onsid-

erably easier to adapt to our needs. However,

a
tively preventing allo
ation while a page is

in any playout bu�er, whi
h is a requirement

unique to ABISS, may be a
ontroversial addi-

tion.

4.4 Meta-data updates

When writing, �le meta-data su
h as the �le

size and the modi�
ation time is also
hanged,

and needs to be written ba
k to disk. When

Page allocation

Buffer head allocation

Location lookup
Old

New

Allocation

?
Page is already in the page cache ?

Y N

?
Overwrite entire block ?

I/O request enqueuing

Y

N

I/O

I/O request completion

Data copy

Meta−data update

(Page dirty)

Writeback

(Page clean)

I/O

(Reclaim)

I/O
possible

Figure 11: The steps in writing a page (without

ABISS).

reading, we
ould just suppress meta-data up-

dates, but this is not an option when writing.

Instead, we
ount on these updates to be per-

formed asyn
hronously, and therefore not to de-

lay the ABISS user.

This is
learly not an optimal solution, par-

ti
ularly when
onsidering journaling, whi
h im-

plies syn
hronous updates of on-disk data, and

we plan to look into whether meta-data updates

an be made fully asyn
hronous, while still hon-

oring assuran
es made by journaling.

Figure 12 shows the modi�ed write pro
ess

when using ABISS, with all read and write op-

erations moved into the prefet
her.

4.5 FAT's
ontiguous �les

Files in a FAT �le system are always logi
ally

ontiguous, i.e., they may not have holes. If

adding data beyond the end of �le, the in-

between spa
e must be �lled �rst. This
auses

Writeback

(Page clean)

I/O

Page allocation

Buffer head allocation

Page is already in the page cache ?

New

?
Y N

Location lookup
Old

?
Overwrite entire block ?

I/O request enqueuing

Y

N

I/O

I/O request completion

Data copy

Meta−data update

(Page dirty)

(Page leaves playout buffer)

(Page is already in the page cache !)

(Access by application)

N

Y

?
Needs allocation ?

Allocation

?
Page is dirty ?

Marginal delay

When opening file

Guaranteed slots

Disk I/O priority

Marginal delay

Disk I/O priority

Hope for the best

Application mlocks buffer

E
xplicit w

riteback (in prefetcher)
P

refetching

I/O
possible

Disk I/O priority

Figure 12: The modi�ed sequen
e of steps in writing

a page using ABISS.

a
on
i
t, if we en
ounter a page marked for de-

layed allo
ation while �lling su
h a gap. If we

write this page immediately, we may in
i
t an

unexpe
ted delay upon the ABISS user(s) whose

playout bu�er
ontains this page. On the other

hand, if we defer writing this page until it has

left all playout bu�ers, we must also blo
k the

pro
ess that is trying to extend the �le, or turn

also this write into a delayed allo
ation.

Sin
e our infrastru
ture for delayed allo
a-

tions does not yet work for �les a

essed with-

out ABISS, and be
ause a page
an be held in

a playout bu�er inde�nitely, we
hose to simply

ignore the delayed allo
ation
ag in this
ase,

and to write the page immediately.

A more subtle
onsequen
e of all �les being

ontiguous is that new spa
e
an only be allo-

ated in a write
all, never when writing ba
k

memory-mapped data. With delayed allo
ation

this
hanges, and allo
ations may now happen

during writeba
k, triggered by a
tivity of the al-

lo
ation
ode. As a
onsequen
e, the lo
king in

the allo
ation
ode of the FAT �le system driver

has to be
hanged to be
ome reentrant.

5

5 Measurements

To be able to assure we have rea
hed our main

goal as stated before, near-zero I/O delays, a

testing setup was
reated. The ma
hine run-

ning ABISS was deliberately a fairly low-end

ma
hine, to assess the results in the light of em-

bedded
onsumer devi
es. The data was gath-

ered by rwrt, a tool in the ABISS distribution

whi
h performs iso
hronous read or write opera-

tions on a �le with a
ertain spe
i�ed data rate.

We have
ompared the results obtained using

ABISS with those obtained using the standard

Linux disk I/O. For fair
omparison, we used

the ABISS elevator on all o

asions.

The measurements are performed on a system

built around a Transmeta Crusoe TM5800 CPU

[5℄, running at 800 MHz, equipped with 128 MB

of main memory of whi
h about 92 MB is avail-

able for appli
ations, a

ording to free. Two

hard drives were
onne
ted to the system: the

primary drive
ontaining the operating system

and appli
ations, and a se
ondary drive purely

for measurement purposes. The drive on whi
h

our tests were performed was a 2.5" 4200 RPM

Hita
hi Travelstar drive.

We have measured the jitter and the laten
y

of reads and writes, the laten
y of advan
ing

5. This reorganization is partly
ompleted at the time

of writing.

the playout point, the duration of the sleeps of

our measurement tool between the I/O
alls and

the e�e
tive distan
e of the playout point move-

ments. Of these values the jitter is the most

interesting one, as it in
ludes both the system

all time as well as any e�e
ts on time-keeping.

Therefore it is a realisti
 view of what an ap-

pli
ation
an really expe
t to get. This is fur-

ther explained in �gure 13. Furthermore, the

behaviour of ba
kground best-e�ort readers was

analyzed.

Last but not least, we made sure that the

streams we read or write are not
orrupted

in the pro
ess. This was done by adding se-

quen
e numbers in the streams, either in pre-

pared streams for reading or on-the-
y while

writing.

}
 sleep_until(due_time);
 due_time = now;

 due_time = when next read is due;
 // C
 move_playout();
 // B
 read();

while (work_to_do) {
due_time = now;

 if (due_time < now)

 // A (should ideally be due_time)

Figure 13: Main loop in rwrt used for reading. La-

ten
y is the time from A to B, jitter is B�due time.

6

Playout point advan
ement laten
y is C�B. A sim-

ilar loop is used for writing. Missed deadlines are

forgiven by making sure the next due time will never

be in the past.

5.1 Reading and writing perfor-

man
e

The delays of both the read and write system

all with ABISS were measured under heavy sys-

tem load, to show we are e�e
tively able to guar-

antee our promised real-time behaviour. Using

the rwrt tool, we have read or written a stream

of 200 MB with a data rate of 1 MB/s, in blo
ks

of 10 kB. The playout bu�er size was set to 564

kB for reading and a generous 1 MB for writ-

ing, as the latter stressed the system noti
eably

more. The number of guaranteed real-time re-

quests in the elevator queue was set to 200.

For the tests involving writing, data was writ-

ten to a new �le. The system load was gen-

erated by simultaneously running eight greedy

best-e�ort readers or writers

7

during the tests,

using separate �les with an as high as possible

data rate. The ba
kground writers were over-

writing old data to avoid too many allo
ations.

5.2 Timeshifting s
enario test

To show a realisti
 s
enario for appli
ations

mentioned in the introdu
tion of this paper,

we have measured the performan
e of three

foreground, real-time writers writing new data,

while one foreground real-time reader was read-

ing the data of one of the writers. This is
ompa-

rable with re
ording two streams while wat
hing

a third one using timeshifting

8

. We have used

the same setup as with the previous measure-

ments, i.e., the same bit rate and �le sizes.

5.3 Results

The top two plots in �gure 14 show the mea-

sured jitter for reading operations. The plots

are
umulative proportional, i.e., ea
h point ex-

presses the per
entage of requests (on the y-axis)

that got exe
uted after a
ertain amount of time

(on the x-axis). For example, a point at (5 ms,

0.1%) on the graph would indi
ate that 0.1% of

all operations took longer than 5 ms. This ni
ely

shows the
lustering of the delays; a steep part

of the graphs indi
ates a
luster.

It
an be seen that only a small per
entage

of the requests experien
e delays signi�
antly

longer than average. However, those measure-

ments are the most interesting ones, as we try

to bound the experien
ed delays heuristi
ally.

To be able to fo
us on these delays, the y-axis

is logarithmi
. As the greedy best-e�ort readers

experien
e delays of orders of magnitude longer

than the real-time delays, the x-axis is logarith-

mi
 as well.

Without using the ABISS prefet
hing me
h-

anism or I/O priorities, all traÆ
 is basi
ally

unbounded best-e�ort. Under the load of the

greedy readers, the requested 1 MB/s
an de�-

nitely not be provided by the system. Although

the majority of the requests are served within

6. We
onsidered using the interval C � due time in-

stead, but found no visible di�eren
e in preparatory

tests.

7. Greedy readers or writers try to read or write as fast

as possible, in this
ase in a best-e�ort way, using a lower

CPU and I/O priority than the ABISS pro
esses.

8. Timeshifting is essentially re
ording a stream and

playing the same stream a few minutes later. For ex-

ample, this
an be used for pausing while wat
hing a

broad
ast.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Reading without ABISS

Best-effort, 1 MB/s

Best-effort, greedy

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Reading with ABISS

Real-time, 1 MB/s

Best-effort, greedy

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Writing without ABISS

Best-effort, 1 MB/s

Best-effort, greedy

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Writing with ABISS

Real-time, 1 MB/s

Best-effort, greedy

 0.001

 0.01

 0.1

 1

 10

 100

 0 400 800 1200 1600 2000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Timeshifting without ABISS

Reader

Writers

 0.001

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Timeshifting with ABISS

Reader and writers

Figure 14: Cumulative proportional plots of the jitter measurements. In all
ases the ABISS elevator was

used and the measurements were performed on a FAT �lesystem.

a few millise
onds, o

asional delays of up to a

300 ms were measured. The performan
e of the

greedy readers is even worse: maximum servi
e

times of more than a se
ond o

urred.

When ABISS is used, we see an enormous de-

rease of the maximum delay: the reading re-

quests of the 1 MB/s foreground reader now get

servi
ed within less than 5 ms, while the ba
k-

ground readers are hardly in
uen
ed.

Similar results were observed when using

ABISS for writing, as
an be
on
luded from the

middle two plots in �gure 14. Using no bu�er-

ing, prefet
hing or real-time e�orts, but with the

ABISS elevator, both the 1 MB/s writer of new

data as the greedy ba
kground writers experi-

en
e delays of up to ten se
onds. ABISS is able

to de
rease the servi
e times of the foreground

writer to the same level as when it is used for

reading: a maximum delay of less than 5 ms,

while again the ba
kground writers experien
e

little dis
omfort.

As for the timeshifting s
enario with multi-

ple high-priority real-time writers and a ditto

reader, the results
onform with the above. The

results are shown in the last two plots in �g-

ure 14. Without the help of ABISS, espe
ially

the writers
annot keep up at all and some re-

quest only get served after se
onds. Again, using

ABISS shortens the delays to less than 5 ms, for

both the reader and the writers.

6 Future work

We have brie
y experimented with a me
ha-

nism based on the NUMA emulator [6℄, to pro-

vide a guaranteed amount of memory to ABISS

users. With our
hanges, we generally observed

worse results with than without this me
hanism,

whi
h suggests that Linux memory management

is usually
apable to fend for itself, and
an

maintain suÆ
ient free memory reserves. In pe-

riods of extreme memory pressure, this is not

true, and additional help may be needed.

When additional ABISS users are admitted

or appli
ations
lose their �les, I/O laten
y

hanges. In response to this, playout bu�ers

should be adjusted. We
urrently only provide

the basi
 infrastru
ture for this, i.e., the ABISS

daemon that oversees system-wide resour
e use,

and a set of
ommuni
ation me
hanisms to af-

fe
t s
hedulers, but we do not implement dy-

nami
 playout bu�er resizing so far.

Sin
e improvements are
onstantly being

made to the memory management subsystem,

it would be good to avoid the expli
it write-

ba
k des
ribed in se
tion 4.2, and use the regular

writeba
k me
hanism instead. We need to iden-

tify why attempts to do so have only
aused out

of memory
onditions.

As dis
ussed in se
tion 4.3, error handling

when using delayed allo
ation is inadequate for

most appli
ations. This is due to the la
k of

a reservation me
hanism that
an presently be

used by ABISS. Possible solutions in
lude either

the introdu
tion of reservations at the VFS level,

or to try to use �le system spe
i�
 reservation

me
hanisms, su
h as the one available for ext3,

also with ABISS.

Sin
e delayed allo
ation seems to be useful in

many s
enarios, it would be worthwhile to try

to implement a general me
hanism, that is nei-

ther tied to a spe
i�
 usage pattern (su
h as

the ABISS prefet
her), nor
on�ned to a single

�le system. Also, delayed allo
ation is
urrently

very experimental in ABISS, and some
orner

ases may be handled improperly.

Last but not least, it would be interesting

to explore to what extent the fun
tionality of

ABISS
ould be moved into user spa
e, e.g., by

giving regular appli
ations limited a

ess to disk

I/O priorities.

7 Con
lusion

The ABISS framework is able to provide a num-

ber of di�erent servi
es for
ontrolling the way

reads and writes are exe
uted. It furthermore

allows for a highly
ontrolled laten
y due to the

use of elevated CPU and I/O priorities by using

a
ustom elevator. These properties have en-

abled us to implement a servi
e providing guar-

anteed I/O throughput and servi
e times, with-

out making use of an over-dimensioned system.

Other strategies might also be implemented us-

ing ABISS, e.g., a HDD power management al-

gorithm to extend the battery life of a portable

devi
e.

Reading is a more
learly de�ned operation

than writing and the solutions for
ontrolling the

laten
ies involved have matured, yielding good

results with FAT, ext2 and ext3. We have iden-

ti�ed the problem spots of the writing operation

and have implemented partial solutions, in
lud-

ing delayed allo
ation. Although these imple-

mentations are
urrently in a proof-of-
on
ept

state, the results are good for both FAT and

ext2. The interfa
e
omplexity of our frame-

work is hidden from the appli
ation requesting

the servi
e, by introdu
ing a middleware library.

To determine the a
tual e�e
tiveness and per-

forman
e of both the framework as well as the

implemented s
heduler, we have
arried out sev-

eral measurements. The results of the standard

Linux I/O system have been
ompared with

the results of using ABISS. Summarizing, using

ABISS for reading and writing streams with a

maximum bit rate whi
h is known a priori leads

to heuristi
ally bounded servi
e times in the or-

der of a few millise
onds. Therefore, bu�ering

requirements for the appli
ation are greatly re-

du
ed or even eliminated, as all data will be

readily available.

Referen
es

[1℄ Li, Hong; Cumpson, Stephen R.; Korst, Jan;

Jo
hemsen, Robert; Lambert, Niek. A S
al-

able HDD Video Re
ording Solution Using

A Real-time File System. IEEE Transa
tions

on Consumer Ele
troni
s, Vol. 49, No. 3,

663{669, 2003.

[2℄ Axboe, Jens. [PATCH℄[CFT℄ time sli
ed
fq

ver18. Posted on the linux-kernel mailing

list, De
ember 21, 2004. http://arti
le.

gmane.org/gmane.linux.kernel/264676

[3℄ Van den Brink, Benno; Almesberger,

Werner. A
tive Blo
k I/O S
heduling Sys-

tem (ABISS). Pro
eedings of the 11th

International Linux System Te
hnology

Conferen
e (Linux-Kongress 2004), pp.

193{207, September 2004. http://abiss.

sour
eforge.net/do
/LK2004_abiss.pdf

[4℄ Cao, Mingming; Ts'o, Theodore Y.;

Pulavarty, Badari; Bhatta
harya, Suparna;

Dilger, Andreas; Tomas, Alex; Tweedie,

Stephen C. State of the Art: Where we are

with the Ext3 �lesystem. To appear in the

Pro
eedings of the Linux Symposium, Ot-

tawa, July 2005.

[5℄ The Transmeta Corporation http:

//www.transmeta.
om/
rusoe/
rusoe_

tm5800_tm5500.html

[6℄ Kleen, Andi. [PATCH℄ x86 64: emulate

NUMA on non-NUMA hardware. Posted on

the linux-kernel mailing list, August 31,

2004. http://arti
le.gmane.org/gmane.

linux.kernel.
ommits.head/38563

