
Ative Blok I/O Sheduling System (ABISS)

Giel de Nijs

giel.de.nijs�philips.om

Werner Almesberger

werner�almesberger.net

Benno van den Brink

benno.van.den.brink�philips.om

July 27, 2005

Abstrat

The Ative Blok I/O Sheduling System

(ABISS) is an extension of the storage subsys-

tem of Linux. It is designed to provide guar-

anteed reading and writing bit rates to applia-

tions, with minimal overhead and low lateny.

In this paper, the various omponents of

ABISS as well as their atual implementation

are desribed. This inludes work on the Linux

elevator and support for delayed alloation.

In a set of experimental runs with real-life

data we have measured great improvements of

the real-time response of read and write opera-

tions under heavy system load.

1 Introdution

As storage spae is getting heaper, the use of

hard disk drives in home or mobile onsumer

devies is beoming more and more mainstream.

As this lass of devies like HDD video reorders,

media enters and personal audio and video

players were originally intended to be used by

one person at a time (or by multiple persons,

but wathing the same ontent), performane

of the hard disk drives was not a real issue.

Adding more video soures to suh a devie

(more tuners, for instane), however, will strain

the storage subsystem by demanding the reord-

ing of multiple streams simultaneously. As these

devies are being enabled with onnetivity op-

tions and beome interonneted through home

networks or personal area networks, a devie

should also be able to serve a number of au-

dio or video streams to multiple lients. For

example, a media enter should be able to pro-

vide a number of so-alled media extenders or

renderers throughout the house with reorded

ontent. Putting aside high bit rate tasks, even

simple low-end devies ould bene�t from a very

low lateny storage system.

Consumer eletronis (CE) equipment has to

onsist of fairly low-ost hardware and often

has to meet a number of other onstraints like

low power onsumption and low-noise operation.

Devies serving media ontent should therefore

do this in an eÆient way, instead of using per-

formane overkill to provide their soft-real-time

servies. To be able to aomplish this sharing

of resoures in an e�etive way, either the ap-

pliations have to be aware of eah other or the

system has to be aware of the appliations.

In this paper we will present the results of

work done on the storage subsystem of Linux,

resulting in the Ative Blok I/O Sheduling

System (ABISS). The main purpose of ABISS

is to make the system appliation-aware by ei-

ther providing a guaranteed reading and writ-

ing bit rate to any appliation that asks for

it or denying aess when the system is fully

ommitted. Apart from these guaranteed real-

time (RT) streams, our solution also introdues

priority-based best-e�ort (BE) disk traÆ.

The system onsists of a framework inluded

in the kernel, with a poliy and oordination

unit implemented in user spae as daemon. This

approah ensures separation between the kernel

infrastruture (the framework) and the poliies

(e.g. admission ontrol) in user spae.

The kernel part onsists mainly of our own

elevator and the ABISS sheduler. The eleva-

tor implements I/O priorities to orretly distin-

guish between real-time guaranteed streams and

bakground best-e�ort requests. The sheduler

is responsible for timely preloading and bu�er-

ing of data. Furthermore, we have introdued an

alternative alloation mehanism to be more ef-

fetively able to provide real-time writing guar-

antees. Apart from these new features, some

minor modi�ations were made to �le system

drivers to inorporate our framework. ABISS

supports the FAT, ext2 and ext3 �lesystems.

ABISS works from similar premises as RTFS

[1℄, but puts less emphasis on tight ontrol of

low-level operations, and more on onvergene

with urrent Linux kernel development.

In setion 2 a general overview of the ABISS

arhiteture is given. Setion 3 desribes the

steps involved in reading and explains the solu-

tions inorporated in ABISS to ontrol the in-

volved latenies. The same is done for the writ-

ing proedure in setion 4. Performane mea-

surements are presented in setion 5, followed

by future work in setion 6 and the onlusions

in setion 7.

The ABISS projet is hosted at http://

abiss.soureforge.net.

2 Arhiteture

An appliation reading or writing data from a

hard drive in a streaming way needs timely avail-

ability of data to avoid skipping of the playbak

or reording. Disk reads or writes an introdue

long and hard-to-predit delays both from the

drive itself as well as from the various operating

system layers providing the data to the appli-

ation. Therefore, onventionally a streaming

appliation introdues a relatively large bu�er

to bridge these delays. The problem however is

that as the delays are theoretially unbounded

and an be quite long in pratie (espeially

on a system under heavy load), the applia-

tion annot predit how muh bu�er spae will

be needed. Worst-ase bu�ering while reading

means loading the whole �le into memory, while

a worst-ase write bu�er should be large enough

to hold all the data whih is being written to

disk.

2.1 Adaptive bu�ering

If I/O priorities are introdued and thus the

involved delays beome more preditable, an

adaptive bu�ering sheme may be a useful ap-

proah. The adaptive algorithm an ompen-

sate for disk lateny, system speed and various

other variables. Still, an appliation will need

to know how muh ompetition it will fae and

what the initial parameters should be. Also, the

algorithm would need some way to orretly di-

mension the bu�er to be able to sustain some

bakground ativity.

Furthermore, some fairness against lower-

priority I/O should be maintained. If any appli-

ation an raise its priority unontrolled, best-

e�ort traÆ an be ompletely starved. Too

many appliations doing too muh I/O at a high

priority an also result in unbounded delays for

those appliations, simply beause there are not

enough system resoures available. Clearly, ad-

mission ontrol is needed.

ABISS implements suh an adaptive bu�ering

algorithm as a servie for streaming appliations

on a relatively oarse time sale; bu�er sizes are

determined when the �le is opened and may be

adapted when the real-time load hanges (i.e.,

when other high-priority �les are opened). It

makes use of elevated I/O priorities to be able

to guarantee bounded aess times and a real-

time CPU priority to be able to more e�etively

predit the various operating system related de-

lays. Furthermore, the �le system meta-data is

ahed. All delays are thus preditable in non-

degenerate ases and an be aught by a rela-

tively small bu�er on system level, outside of

the appliation.

Furthermore, an admission ontrol system is

implemented in a user-spae daemon to make

sure no more ommitments are made than the

available resoures allow. It should be noted

that although our daemon o�ers a framework

for extensive admission ontrol, only a very ba-

si system is available at the moment. The ar-

hiteture of our framework as inorporated in

the Linux kernel is shown in �gure 1.

Prior versions of ABISS used very �ne-grained

administration and measurement instrumenta-

tion to have very narrowly de�ned performane

harateristis. With time, these demands on

the underlying layers have gotten \softer". Sine

we are overing larger parts of the system, lead-

ing to inuenes beyond our full ontrol like the

alloation of disk spae, we annot predit the

involved delays with suh preision as before.

2.2 Servie model

When an appliation requests the servies of

ABISS (we all suh an appliation an ABISS

user, or, more spei�ally, an ABISS reader or

writer), it informs the system about both the bit

rate as well as the maximum read or write burst

size it is planning to use. A funtion whih opens

a �le and sets these parameters is available in the

ABISS middleware library. Given knowledge of

the general system responsiveness (I/O laten-

ies, system speed and bakground load), the

bu�er an be orretly dimensioned using these

variables. This information is also used in the

admission ontrol sheme in the daemon whih

oversees the available system resoures.

As the behavior of a streaming appliation

is highly preditable, a fairly simple prefether

an be used to determine whih data should be

available in the bu�er. The prefething poliy is

Hardware

User space

Kernel

etc.

MM,

Configuration interface (ioctl)

Page cache / Page I/O

ElevatorRequest queue(s) Block device layer

Block device driver

Scheduler API

Scheduler cores

Scheduler library

libabiss

Application Application

New

Changed

system

driver

File

POSIX API (VFS)

abissd

Figure 1: Global ABISS arhiteture layout.

onentrated in the ABISS sheduler. A sepa-

rate worker thread performs the atual reading

of the data asynhronously, to keep the response

time to the appliation to a minimum.

We use the prefether mehanism also when

writing, in whih ase it is not only responsible

for the alloating and possibly loading of new

pages, but also for oordinating writebak.

To minimize the response time during writ-

ing the operations whih introdue delays are

removed from the alling path of the write op-

eration of the appliation. This is done by post-

poning the alloation, to make sure this I/O in-

tensive task is done asynhronously at a moment

the system has time to spare. In our \delayed

alloation" solution, spae for new data in the

bu�er does not get alloated until the moment

of writebak.

An overview of the above solutions is shown

graphially in �gure 2. The tehnial implemen-

tations will be elaborated below.

2.3 Formal servie de�nition

The real-time servie o�ered to an appliation is

haraterized by a data rate r and a maximum

burst read size b. The appliation sets the play-

out point to mark the loation in the �le after

whih it will perform aesses. As long as the

playout point moves at rate r or less, aesses

to up to b bytes after the playout point will be

guaranteed to be served from memory.

If we onsider reading a �le as a sequene of

n single-byte aesses with the i-th aess at lo-

ation a

i

at time t

i

and with the playout point

set to p

i

, the operating system then guarantees

that all aesses are served from memory as long

as the following onditions are met for all i; j in

1; : : : ; n with t

i

< t

j

:

p

i

� p

j

< p

i

+ b+ r(t

j

� t

i

)

p

j

� a

j

< b+min(p

j

; p

i

+ r(t

j

� t

i

))

The infrastruture an also be used to im-

plement a prioritized best-e�ort servie without

guarantees. Suh a servie would ensure that, on

average and when measured over a suÆiently

long interval, a reader that has always at least

PROBLEM
disk reads can introduce long
and hard to predict delays

PROBLEM
prefetcher needs bounded
access time

SOLUTION
use elevated I/O priority

SOLUTION
use elevated CPU priority

SOLUTION
prefetch data

PROBLEM
meta−data lookups and writes
delay access

SOLUTION
mount with noatime

PROBLEM
allocation of disk space may
mean significant I/O

SOLUTION
allocate disk space
asynchronously

SOLUTION
cache meta−data

PROBLEM
regular writeback keeps up
poorly with delayed allocation

GOAL
Provide near−zero I/O time

SOLUTION
explicitly write back pages

Figure 2: Overview of the solutions inorporated in ABISS.

one request pending, will experiene better la-

teny and throughput, than any reader using a

lower priority.

3 Reading

When reading a page of �le data, the kernel

�rst alloates a free page. Then it determines

the loation of the orresponding disk bloks,

and may reate so-alled bu�er heads

1

for them.

Next, it submits disk I/O requests for the bu�er

heads, and waits for these requests to omplete.

Finally, the data is opied to the appliation's

bu�er, the aess time is updated, and the read

system all returns. This proedure is illus-

trated in �gure 3.

If trying to read a page that is already present

in memory (in the so-alled page ahe), the

data beomes available immediately, without

any prior I/O. Thus, to avoid waiting for data

to be read from disk, we make sure that it is

already in the page ahe when the appliation

needs it.

3.1 Prefething

We an aurately predit whih data will be

read, and an therefore initiate the read proess

ahead of time. We all this prefething. Pages

read in advane are plaed in a playout bu�er,

illustrated in �gure 4, in whih they are kept

Guaranteed slots

Marginal delay

I/O request enqueuing

Page allocation

Y N
?

P
refetching

Page is already in the page cache ?

Buffer head allocation

Location lookup When opening file

Marginal delay

I/O request completion

Data copy

Meta−data update

Application mlocks buffer

Mount with noatime

Disk I/O priorityI/O

Figure 3: The steps in reading a page, and how

ABISS ontrols their lateny.

until the appliation has read them. After that,

pages with old data are evited from the playout

bu�er, and new pages with data further into the

�le are loaded. This an also be thought of as a

bu�er sliding over the �le data.

The playout bu�er maintained by ABISS is

not a bu�er with the atual �le data, but an

1. A bu�er head desribes the status and loation of

a blok of the orresponding �le system, and is used to

ommuniate I/O requests to the blok devie layer.

upgrade existing request
Request new page or

Playout point

playout point
Application moves

Drop first page, shift window

Page arrives (in page cache)

Page cache

Playout buffer

Figure 4: Playout bu�er movement is initiated by

the appliation moving its playout point. More than

one page may be \in ight" at one.

array of pointers to the page strutures, whih

in turn desribe the data pages.

Sine the maximum rate at whih the applia-

tion will read is known, we an, given knowledge

of how long the data retrieval will take, size the

playout bu�er aordingly, as shown in �gure 5.

For this, we onsider the spae determined by

the appliation, and the bu�ering needed by the

operating system to load data in time. The ap-

pliation requests the total bu�er size it needs,

whih omprises the maximum amount of data it

will read at one, and the spae needed to om-

pensate for imperfetions in its sheduling. To

this, bu�ering is added to over the maximum

time that may pass between initiating retrieval

of a page and its arrival, and the bathing de-

sribed in setion 3.4.

Prefething is similar to the read-ahead pro-

ess the kernel performs regularly when sequen-

tially reading �les. The main di�erenes are that

read-ahead uses heuristis to predit the appli-

ation behaviour, while appliations expliitly

tell ABISS how they will read �les, and that

ABISS keeps a referene to the pages in the play-

out bu�er, so that they annot be relaimed be-

fore they have atually been used.

Prefething is done in a separate kernel

thread, so the appliation does not get delayed.

For prefething to work reliably, and without

onsuming exessive amounts of memory, data

retrieval must be relatively quik, and the worst-

ase retrieval time should not be muh larger

Application jitter

Read size or work area

Kernel latency

IO latency

Application−dependent buffering

Operating system and hardware
dependent buffering

Read batching

Figure 5: The playout bu�er of the sheduler pro-

vides for bu�ering needs resulting from appliation

properties and from latenies aused by the operating

system and the hardware.

than the typial retrieval time. In the following

setions, we desribe how ABISS aomplishes

this.

3.2 Memory alloation

When reading a page from disk, memory alloa-

tion happens mainly at three plaes: (1) when

alloating the page itself, (2) when alloating

the bu�er heads, and (3) when alloating disk

I/O request strutures.

The �rst two are regular memory alloation

proesses, and we assume that they are not

soures of delays signi�antly larger than disk

I/O lateny.

2

The number of disk I/O request strutures

is limited by the maximum size of the request

queue of the orresponding devie. If the re-

quest queue is full, proesses wanting to enqueue

new requests have to wait until there is room in

the queue. Worse yet, one there is room, all

proesses waiting for it will be handled in FIFO

order, irrespetive of their CPU priority.

In order to admit high priority I/O requests

(see below) instantly to the request queue, the

ABISS elevator an be on�gured to guarantee

a ertain number of requests for any given pri-

ority. Note that this does not a�et the atual

alloation of the request data struture, but only

whether a proess has to wait before attempting

an alloation.

2. In fat, they are muh shorter most of the time,

exept when synhronous memory relaim is needed.

Application playout point

Beginning of playout buffer

Page is no longer used

Page is accessible and up to date

Page is being loaded

Pending read request

Advances at the requested rate (or less)

Moves freely

Figure 6: Playout bu�er movement is ontrolled by

the kernel, and traks the position of the playout

point, ontrolled by the appliation.

3.3 Prioritized disk I/O

The key purpose of ABISS is to hide I/O lateny

from appliations. This is aomplished mainly

through the use of prefething. Now, in order to

make prefething work properly, we also have to

limit the worst-ase duration

3

of I/O requests,

independent from what ompeting appliations

may do.

ABISS ahieves isolation against appliations

not using ABISS by giving I/O requests issued

by the prefether thread a higher priority than

requests issued by regular appliations. The

priorities are implemented in the elevator:

4

re-

quests with a high priority are served before any

requests with a lower priority. We urrently use

an elevator spei�ally designed for ABISS. In

the future, we plan to migrate to Jens Axboe's

more versatile time-slied CFQ elevator [2℄.

An interesting problem ours if a page enters

an ABISS playout bu�er while being read at a

low priority. In order to avoid having to wait

until the low priority requests get proessed, the

prefether upgrades the priority of the requests

assoiated with the page.

We have desribed the ABISS elevator in more

detail in [3℄.

ABISS users may also ompete among eah

other for I/O. To ensure that there is enough

time for requests to omplete, the playout bu�er

must be larger if more ABISS users are admit-

ted. Dynamially resizing of playout bu�ers is

urrently not implemented. Instead, the initial

playout bu�er size an be hosen suh that it

is suÆiently large for the expeted maximum

ompeting load.

3.4 Rate ontrol

Movement of the playout bu�er is limited to

the rate the appliation has requested. Appli-

ation and kernel synhronize through the so-

alled playout point: when the appliation is

done aessing some data, it moves the playout

point after this data. This tells the kernel that

the playout bu�er an be shifted suh that its

beginning lines up with the playout point again,

as shown in �gure 6.

We require expliit updating of the playout

point, beause, when using read and write, the

�le position alone may not give an aurate in-

diation of what parts of the �le the appliation

has �nished reading. Furthermore, in the ase of

memory-mapped �les, or when using pread and

pwrite, there is no equivalent of the �le position

anyway.

The ABISS sheduler maintains a redit for

playout bu�er movements. If enough redit is

available to align the playout bu�er with the

playout point, this is done immediately. Oth-

erwise, the playout bu�er athes up as far as

it an until all redit is onsumed, and then

advanes whenever enough new redit beomes

available. This is illustrated in �gure 7.

The redit allows the playout bu�er to \ath

up" after small distortions. Its aumulation is

apped to the bath size desribed below, plus

the maximum lateny for timer-driven playout

bu�er movement, as shown in �gure 8.

If the �le was read into the playout bu�er

one page at a time, and there is also onur-

rent ativity, the disk would spend an inordinate

amount of time seeking. Therefore, prefething

only starts when a on�gurable bathing thresh-

old is exeeded, as shown in �gure 9. This

threshold defaults to ten pages (40 kB).

Furthermore, to avoid interrupting best-e�ort

ativity for every single ABISS reader, prefeth-

ing is done for all �les that are at or near (i.e.,

half) the bathing threshold, as soon as one �le

reahes that threshold. This is illustrated in �g-

ure 10.

3.5 Wrapping up

Copying the data to user spae ould onsume

a signi�ant amount of time if memory for the

bu�er needs to be alloated or swapped in at

that time. ABISS makes no speial provisions

3. We ignore degenerate ases, suh as hardware errors.

4. Also alled \I/O sheduler". In this paper, we use

\elevator", to avoid onfusion with the CPU sheduler

and the ABISS sheduler.

Add credit
at rate r

Credit

Set timer when credit
reaches one page

One page

Credit limit

No

Yes

T
im

er
 e

xp
ire

s

Yes

No
Done

> batch ?
PP aheadNo

Yes

Playout point moves

than the batching threshold
Playout points differ by more

Done

Reduce credit by one
page and move buffer

Reduce credit

Set timer

credit >=
one page ?

Load more ?

Figure 7: Playout bu�er movement is limited by a redit that aumulates at the rate requested by the

appliation, and whih is spent when the playout bu�er advanes through the �le.

for this ase, beause an appliation an eas-

ily avoid it by mloking this address region into

memory.

Finally, the �le system may maintain an a-

ess time, whih is updated after eah read op-

eration. Typially, the aess time is written

bak to disk one per seond, or less frequently.

Updating the aess time an introdue parti-

ularly large delays if ombined with journaling.

Sine ABISS urrently provides no mehanism

to hide these delays, �le systems used with it

should be mounted with the noatime option.

4 Writing

When writing a page, the overall proedure is

similar to reading, but a little more ompliated,

as shown in �gure 11: if the page is not already

present in the page ahe, a new page is allo-

ated. If there is already data for this page in

the �le, i.e., if the page does not begin beyond

the end of �le, and does not in its entirety oin-

ide with a hole in the �le, the old data is read

from disk.

If we are about to write new data, the �le

system driver looks for free spae (whih may

involve loking and reading �le system meta-

data), alloates it, and updates the orrespond-

ing �le system meta-data.

Next, the data is opied from the user spae

bu�er to the page. Finally, the status of the

bu�er heads and the page is set to \dirty" to

indiate that data needs to be written bak to

disk, and to \up to date" to indiate that the

bu�ers, or even the entire page, are now �lled

with valid data. Also �le meta-data, suh as the

�le size, is updated.

At this point, the data has normally not been

written to disk yet. This writebak is done asyn-

hronously, when the kernel sans for dirty pages

to ush.

If using journaling, some of the steps above

involve aesses to the journal, whih have to

omplete before the write proess an ontinue.

If overwriting already alloated regions of the

�le, the steps until after the data has been

opied are the same as when reading data, and

ABISS applies the same mehanisms for ontrol-

ling delays.

4.1 Delayed alloation

When writing new data, disk spae for it would

have to be alloated in the write system all. It

is not possible to do the alloation at prefeth

time, beause this would lead to inonsistent �le

state, e.g., the nominal end-of-�le ould di�er

1 jiffie

Timer latency

Work queue latency

Batch size

1 jiffie

Timer is set

C
re

di
t l

im
it

Maximum delay
between adding
work queue
entry and credit
calculation

Minimum duration
of wait

Maximum delay between
timer tick and addition of
work queue entry

Credit is updated

Figure 8: The limit keeps the sheduler from au-

mulating exessive redit, while allowing it to om-

pensate for the delays ourring when sheduling op-

erations.

from the one e�etively stored on disk.

A solution for this problem is to defer the al-

loation until after the appliation has made the

write system all, and the data has been opied

to the page ahe. This mehanism is alled de-

layed alloation.

For ABISS, we have implemented experimen-

tal delayed alloation at the VFS level: when a

page is prefethed, the new PG_delallo page

ag is set. This ag indiates to other VFS fun-

tions that the orresponding on-disk loation of

the data is not known yet.

Furthermore, PG_delallo indiates to mem-

ory management that no attempt should be

made to write the page to disk, e.g., during nor-

mal writebak or when doing a syn. If suh a

writebak were to happen, the kernel would au-

tomatially perform the alloation, and the page

would also get loked during this. Sine alloa-

tion may involve disk I/O, the page may stay

loked for a omparably long time, whih ould

blok an appliation using ABISS that is trying

to aess this page. Therefore, we ensure that

the page does not get loked while it is still in

any playout bu�er.

The ode to avoid alloation is mainly in fs/

buffer., in the funtions __blok_ommit_

write (we set the entire page dirty), ont_

prepare_write and blok_prepare_write (do

nothing if using delayed alloation), and also in

mpage_writepages in fs/mpage. (skip pages

A

B

A

B

Position of disk head

Seek

Position of disk head

Read

Time

Time

Figure 9: Reading a �le (A) with ABISS one page

at a time (above) would ause many seeks, greatly

slowing down any onurrent best-e�ort reader (B).

Therefore, we bath reads (below).

marked for delayed alloation).

Furthermore, ont_prepare_write and

blok_prepare_write may now see pages that

have been prefethed, and thus are already

up to date, but are not marked for delayed

alloation, so these funtions must not zero

them.

The prefething is done in abiss_read_page

in fs/abiss/shed_lib., and writebak in

abiss_put_page, using write_one_page.

Support for delayed alloation in ABISS ur-

rently works with FAT, ext2, and ext3 in data=

writebak mode.

4.2 Writebak

ABISS keeps trak of how many playout bu�ers

share eah page, and only lears PG_delallo

when the last referene is gone. At that

time, the page is expliitly written bak by the

prefether. This also implies alloating disk

spae for the page.

In order to obtain a preditable upper bound

for the duration of this operation, the prefether

uses high disk I/O priority.

We have tried to leave �nal writebak to the

regular memory san and writebak proess of

the kernel, but ould not obtain satisfatory per-

formane, resulting in the system running out

of memory. Therefore, writebak is now done

expliitly when the page is no longer in any

ABISS playout bu�er. It would be desirable to

avoid this speial ase, and more work is needed

to identify why exatly regular writebak per-

formed poorly.

B

B

A

C

A

C

Position of disk head

Position of disk head

Time

Time

Figure 10: If there are multiple ABISS readers (A

and C), further seeks an be avoided if prefething

is synhronized (below).

4.3 Reserving disk spae

A severe limitation of our experimental imple-

mentation of delayed alloation is that errors,

in partiular alloation failures due to lak of

disk spae or quota, are only deteted when a

page is written bak to disk, whih is long after

the write system all has returned, indiating

apparent suess.

This ould be solved by asking the �le system

driver to reserve disk spae when onsidering a

page for delayed alloation, and using this reser-

vation when making the atual alloation. Suh

a mehanism would require �le system drivers

to supply the orresponding funtionality, e.g.,

through a new VFS operation.

There is a set of extensions for the ext3 �le

system by Alex Tomas [4℄, whih also adds,

among other things, delayed alloation, along

with reservation. Unfortunately, this implemen-

tation is limited to the ext3 �le system, and ex-

tending it to support the prefething done by

ABISS would require invasive hanges.

More reent work on delayed alloation with

fewer dependenies on ext3 [4℄ may be onsid-

erably easier to adapt to our needs. However,

atively preventing alloation while a page is

in any playout bu�er, whih is a requirement

unique to ABISS, may be a ontroversial addi-

tion.

4.4 Meta-data updates

When writing, �le meta-data suh as the �le

size and the modi�ation time is also hanged,

and needs to be written bak to disk. When

Page allocation

Buffer head allocation

Location lookup
Old

New

Allocation

?
Page is already in the page cache ?

Y N

?
Overwrite entire block ?

I/O request enqueuing

Y

N

I/O

I/O request completion

Data copy

Meta−data update

(Page dirty)

Writeback

(Page clean)

I/O

(Reclaim)

I/O
possible

Figure 11: The steps in writing a page (without

ABISS).

reading, we ould just suppress meta-data up-

dates, but this is not an option when writing.

Instead, we ount on these updates to be per-

formed asynhronously, and therefore not to de-

lay the ABISS user.

This is learly not an optimal solution, par-

tiularly when onsidering journaling, whih im-

plies synhronous updates of on-disk data, and

we plan to look into whether meta-data updates

an be made fully asynhronous, while still hon-

oring assuranes made by journaling.

Figure 12 shows the modi�ed write proess

when using ABISS, with all read and write op-

erations moved into the prefether.

4.5 FAT's ontiguous �les

Files in a FAT �le system are always logially

ontiguous, i.e., they may not have holes. If

adding data beyond the end of �le, the in-

between spae must be �lled �rst. This auses

Writeback

(Page clean)

I/O

Page allocation

Buffer head allocation

Page is already in the page cache ?

New

?
Y N

Location lookup
Old

?
Overwrite entire block ?

I/O request enqueuing

Y

N

I/O

I/O request completion

Data copy

Meta−data update

(Page dirty)

(Page leaves playout buffer)

(Page is already in the page cache !)

(Access by application)

N

Y

?
Needs allocation ?

Allocation

?
Page is dirty ?

Marginal delay

When opening file

Guaranteed slots

Disk I/O priority

Marginal delay

Disk I/O priority

Hope for the best

Application mlocks buffer

E
xplicit w

riteback (in prefetcher)
P

refetching

I/O
possible

Disk I/O priority

Figure 12: The modi�ed sequene of steps in writing

a page using ABISS.

a onit, if we enounter a page marked for de-

layed alloation while �lling suh a gap. If we

write this page immediately, we may init an

unexpeted delay upon the ABISS user(s) whose

playout bu�er ontains this page. On the other

hand, if we defer writing this page until it has

left all playout bu�ers, we must also blok the

proess that is trying to extend the �le, or turn

also this write into a delayed alloation.

Sine our infrastruture for delayed alloa-

tions does not yet work for �les aessed with-

out ABISS, and beause a page an be held in

a playout bu�er inde�nitely, we hose to simply

ignore the delayed alloation ag in this ase,

and to write the page immediately.

A more subtle onsequene of all �les being

ontiguous is that new spae an only be allo-

ated in a write all, never when writing bak

memory-mapped data. With delayed alloation

this hanges, and alloations may now happen

during writebak, triggered by ativity of the al-

loation ode. As a onsequene, the loking in

the alloation ode of the FAT �le system driver

has to be hanged to beome reentrant.

5

5 Measurements

To be able to assure we have reahed our main

goal as stated before, near-zero I/O delays, a

testing setup was reated. The mahine run-

ning ABISS was deliberately a fairly low-end

mahine, to assess the results in the light of em-

bedded onsumer devies. The data was gath-

ered by rwrt, a tool in the ABISS distribution

whih performs isohronous read or write opera-

tions on a �le with a ertain spei�ed data rate.

We have ompared the results obtained using

ABISS with those obtained using the standard

Linux disk I/O. For fair omparison, we used

the ABISS elevator on all oasions.

The measurements are performed on a system

built around a Transmeta Crusoe TM5800 CPU

[5℄, running at 800 MHz, equipped with 128 MB

of main memory of whih about 92 MB is avail-

able for appliations, aording to free. Two

hard drives were onneted to the system: the

primary drive ontaining the operating system

and appliations, and a seondary drive purely

for measurement purposes. The drive on whih

our tests were performed was a 2.5" 4200 RPM

Hitahi Travelstar drive.

We have measured the jitter and the lateny

of reads and writes, the lateny of advaning

5. This reorganization is partly ompleted at the time

of writing.

the playout point, the duration of the sleeps of

our measurement tool between the I/O alls and

the e�etive distane of the playout point move-

ments. Of these values the jitter is the most

interesting one, as it inludes both the system

all time as well as any e�ets on time-keeping.

Therefore it is a realisti view of what an ap-

pliation an really expet to get. This is fur-

ther explained in �gure 13. Furthermore, the

behaviour of bakground best-e�ort readers was

analyzed.

Last but not least, we made sure that the

streams we read or write are not orrupted

in the proess. This was done by adding se-

quene numbers in the streams, either in pre-

pared streams for reading or on-the-y while

writing.

}
 sleep_until(due_time);
 due_time = now;

 due_time = when next read is due;
 // C
 move_playout();
 // B
 read();

while (work_to_do) {
due_time = now;

 if (due_time < now)

 // A (should ideally be due_time)

Figure 13: Main loop in rwrt used for reading. La-

teny is the time from A to B, jitter is B�due time.

6

Playout point advanement lateny is C�B. A sim-

ilar loop is used for writing. Missed deadlines are

forgiven by making sure the next due time will never

be in the past.

5.1 Reading and writing perfor-

mane

The delays of both the read and write system

all with ABISS were measured under heavy sys-

tem load, to show we are e�etively able to guar-

antee our promised real-time behaviour. Using

the rwrt tool, we have read or written a stream

of 200 MB with a data rate of 1 MB/s, in bloks

of 10 kB. The playout bu�er size was set to 564

kB for reading and a generous 1 MB for writ-

ing, as the latter stressed the system notieably

more. The number of guaranteed real-time re-

quests in the elevator queue was set to 200.

For the tests involving writing, data was writ-

ten to a new �le. The system load was gen-

erated by simultaneously running eight greedy

best-e�ort readers or writers

7

during the tests,

using separate �les with an as high as possible

data rate. The bakground writers were over-

writing old data to avoid too many alloations.

5.2 Timeshifting senario test

To show a realisti senario for appliations

mentioned in the introdution of this paper,

we have measured the performane of three

foreground, real-time writers writing new data,

while one foreground real-time reader was read-

ing the data of one of the writers. This is ompa-

rable with reording two streams while wathing

a third one using timeshifting

8

. We have used

the same setup as with the previous measure-

ments, i.e., the same bit rate and �le sizes.

5.3 Results

The top two plots in �gure 14 show the mea-

sured jitter for reading operations. The plots

are umulative proportional, i.e., eah point ex-

presses the perentage of requests (on the y-axis)

that got exeuted after a ertain amount of time

(on the x-axis). For example, a point at (5 ms,

0.1%) on the graph would indiate that 0.1% of

all operations took longer than 5 ms. This niely

shows the lustering of the delays; a steep part

of the graphs indiates a luster.

It an be seen that only a small perentage

of the requests experiene delays signi�antly

longer than average. However, those measure-

ments are the most interesting ones, as we try

to bound the experiened delays heuristially.

To be able to fous on these delays, the y-axis

is logarithmi. As the greedy best-e�ort readers

experiene delays of orders of magnitude longer

than the real-time delays, the x-axis is logarith-

mi as well.

Without using the ABISS prefething meh-

anism or I/O priorities, all traÆ is basially

unbounded best-e�ort. Under the load of the

greedy readers, the requested 1 MB/s an de�-

nitely not be provided by the system. Although

the majority of the requests are served within

6. We onsidered using the interval C � due time in-

stead, but found no visible di�erene in preparatory

tests.

7. Greedy readers or writers try to read or write as fast

as possible, in this ase in a best-e�ort way, using a lower

CPU and I/O priority than the ABISS proesses.

8. Timeshifting is essentially reording a stream and

playing the same stream a few minutes later. For ex-

ample, this an be used for pausing while wathing a

broadast.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Reading without ABISS

Best-effort, 1 MB/s

Best-effort, greedy

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Reading with ABISS

Real-time, 1 MB/s

Best-effort, greedy

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Writing without ABISS

Best-effort, 1 MB/s

Best-effort, greedy

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Writing with ABISS

Real-time, 1 MB/s

Best-effort, greedy

 0.001

 0.01

 0.1

 1

 10

 100

 0 400 800 1200 1600 2000

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Timeshifting without ABISS

Reader

Writers

 0.001

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Jitter (ms)

Timeshifting with ABISS

Reader and writers

Figure 14: Cumulative proportional plots of the jitter measurements. In all ases the ABISS elevator was

used and the measurements were performed on a FAT �lesystem.

a few milliseonds, oasional delays of up to a

300 ms were measured. The performane of the

greedy readers is even worse: maximum servie

times of more than a seond ourred.

When ABISS is used, we see an enormous de-

rease of the maximum delay: the reading re-

quests of the 1 MB/s foreground reader now get

servied within less than 5 ms, while the bak-

ground readers are hardly inuened.

Similar results were observed when using

ABISS for writing, as an be onluded from the

middle two plots in �gure 14. Using no bu�er-

ing, prefething or real-time e�orts, but with the

ABISS elevator, both the 1 MB/s writer of new

data as the greedy bakground writers experi-

ene delays of up to ten seonds. ABISS is able

to derease the servie times of the foreground

writer to the same level as when it is used for

reading: a maximum delay of less than 5 ms,

while again the bakground writers experiene

little disomfort.

As for the timeshifting senario with multi-

ple high-priority real-time writers and a ditto

reader, the results onform with the above. The

results are shown in the last two plots in �g-

ure 14. Without the help of ABISS, espeially

the writers annot keep up at all and some re-

quest only get served after seonds. Again, using

ABISS shortens the delays to less than 5 ms, for

both the reader and the writers.

6 Future work

We have briey experimented with a meha-

nism based on the NUMA emulator [6℄, to pro-

vide a guaranteed amount of memory to ABISS

users. With our hanges, we generally observed

worse results with than without this mehanism,

whih suggests that Linux memory management

is usually apable to fend for itself, and an

maintain suÆient free memory reserves. In pe-

riods of extreme memory pressure, this is not

true, and additional help may be needed.

When additional ABISS users are admitted

or appliations lose their �les, I/O lateny

hanges. In response to this, playout bu�ers

should be adjusted. We urrently only provide

the basi infrastruture for this, i.e., the ABISS

daemon that oversees system-wide resoure use,

and a set of ommuniation mehanisms to af-

fet shedulers, but we do not implement dy-

nami playout bu�er resizing so far.

Sine improvements are onstantly being

made to the memory management subsystem,

it would be good to avoid the expliit write-

bak desribed in setion 4.2, and use the regular

writebak mehanism instead. We need to iden-

tify why attempts to do so have only aused out

of memory onditions.

As disussed in setion 4.3, error handling

when using delayed alloation is inadequate for

most appliations. This is due to the lak of

a reservation mehanism that an presently be

used by ABISS. Possible solutions inlude either

the introdution of reservations at the VFS level,

or to try to use �le system spei� reservation

mehanisms, suh as the one available for ext3,

also with ABISS.

Sine delayed alloation seems to be useful in

many senarios, it would be worthwhile to try

to implement a general mehanism, that is nei-

ther tied to a spei� usage pattern (suh as

the ABISS prefether), nor on�ned to a single

�le system. Also, delayed alloation is urrently

very experimental in ABISS, and some orner

ases may be handled improperly.

Last but not least, it would be interesting

to explore to what extent the funtionality of

ABISS ould be moved into user spae, e.g., by

giving regular appliations limited aess to disk

I/O priorities.

7 Conlusion

The ABISS framework is able to provide a num-

ber of di�erent servies for ontrolling the way

reads and writes are exeuted. It furthermore

allows for a highly ontrolled lateny due to the

use of elevated CPU and I/O priorities by using

a ustom elevator. These properties have en-

abled us to implement a servie providing guar-

anteed I/O throughput and servie times, with-

out making use of an over-dimensioned system.

Other strategies might also be implemented us-

ing ABISS, e.g., a HDD power management al-

gorithm to extend the battery life of a portable

devie.

Reading is a more learly de�ned operation

than writing and the solutions for ontrolling the

latenies involved have matured, yielding good

results with FAT, ext2 and ext3. We have iden-

ti�ed the problem spots of the writing operation

and have implemented partial solutions, inlud-

ing delayed alloation. Although these imple-

mentations are urrently in a proof-of-onept

state, the results are good for both FAT and

ext2. The interfae omplexity of our frame-

work is hidden from the appliation requesting

the servie, by introduing a middleware library.

To determine the atual e�etiveness and per-

formane of both the framework as well as the

implemented sheduler, we have arried out sev-

eral measurements. The results of the standard

Linux I/O system have been ompared with

the results of using ABISS. Summarizing, using

ABISS for reading and writing streams with a

maximum bit rate whih is known a priori leads

to heuristially bounded servie times in the or-

der of a few milliseonds. Therefore, bu�ering

requirements for the appliation are greatly re-

dued or even eliminated, as all data will be

readily available.

Referenes

[1℄ Li, Hong; Cumpson, Stephen R.; Korst, Jan;

Johemsen, Robert; Lambert, Niek. A Sal-

able HDD Video Reording Solution Using

A Real-time File System. IEEE Transations

on Consumer Eletronis, Vol. 49, No. 3,

663{669, 2003.

[2℄ Axboe, Jens. [PATCH℄[CFT℄ time slied fq

ver18. Posted on the linux-kernel mailing

list, Deember 21, 2004. http://artile.

gmane.org/gmane.linux.kernel/264676

[3℄ Van den Brink, Benno; Almesberger,

Werner. Ative Blok I/O Sheduling Sys-

tem (ABISS). Proeedings of the 11th

International Linux System Tehnology

Conferene (Linux-Kongress 2004), pp.

193{207, September 2004. http://abiss.

soureforge.net/do/LK2004_abiss.pdf

[4℄ Cao, Mingming; Ts'o, Theodore Y.;

Pulavarty, Badari; Bhattaharya, Suparna;

Dilger, Andreas; Tomas, Alex; Tweedie,

Stephen C. State of the Art: Where we are

with the Ext3 �lesystem. To appear in the

Proeedings of the Linux Symposium, Ot-

tawa, July 2005.

[5℄ The Transmeta Corporation http:

//www.transmeta.om/rusoe/rusoe_

tm5800_tm5500.html

[6℄ Kleen, Andi. [PATCH℄ x86 64: emulate

NUMA on non-NUMA hardware. Posted on

the linux-kernel mailing list, August 31,

2004. http://artile.gmane.org/gmane.

linux.kernel.ommits.head/38563

