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Abstract: This paper gives an overview of the
mechanisms that currently specified APIs (for Native
ATM and for RSVP) provide to applications for the
purpose of controlling QoS parameters. It compares
the abstractions they provide with respect to appli-
cation needs and modern operating system practices.
Furthermore, it discusses what extensions or modifi-
cations would be desirable in future APIs.

1 Introduction

After an introduction to general aspects of QoS and
APIs, we describe in section 2 how several APIs for
network architecture with QoS support provide con-
trol over QoS parameters, how they present signal-
ing mechanisms to the application, and how they
integrate connection establishment with reservation
setup. In section 3, we examine if they meet applica-
tion needs and how they integrate with advanced op-
erating system concepts. Finally, section 4 proposes
directions in which QoS-aware APIs should evolve in
the future.

*Contact author.

1.1 What is QoS ?

Quality of Service (QoS) concerns are applicable
at all layers of a protocol stack, and depending on
the specific protocols, there may be an explicit trans-
formation of the service guarantees as the user in-
formation transits the protocol stack. QoS concepts
can be applied where there are performance aspects
of interprocess communication, even when there is
no external network. Most humans interacting with
computers expect some sort of response within a rea-
sonable time and this provides what one might call
a user level QoS constraint on system performance.
In general there may be multiple other dimensions to
QoS e.g. reliability, security, loss, cost, etc.

User level QoS issues are becoming increasingly im-
portant as people rely more on computer interaction
as a fundamental daily activity. One measure of this
is in terms of the economic consequences of QoS fail-
ures. This is not just a question of customer rela-
tions for the service providers. Performance failures
of consumer services may lead to legal or regulatory
consequences. In the context of a Global Informa-
tion Infrastructure, QoS must be parameterized and
mechanisms for allocations and parameter degrada-
tion are required for deployment. For some applica-
tions, there are guidelines already available (see e.g.
[1] for voice services), for others, the user level QoS
requirements need to be clarified first.



QoS guarantees are most valuable when applied
end-to-end. Unfortunately this is also the most com-
plex case, since it requires common QoS concepts to
be available across a variety of equipments, perhaps
within different jurisdictions.

QoS concerns might arise wherever there are mul-
tiple independent requests for a constrained resource,
(e.g. a multiplexer or scheduling function). This is
not just a problem for network equipment — it applies
also to the software applications that can introduce
degradations into the end-to-end service. There have
been some efforts in multi-threaded and distributed
operating systems to provide support for QoS notions
(see e.g. [2]) and also in terms of QoS support for
higher layer constructs in the information infrastruc-
ture (e.g. Object Resource Brokers [3]). The widest
consensus on QoS notions seems to have been reached
on the communications aspects, here we have selected
three APIs that are specifically relevant in that con-
text, and so we are primarily concerned with QoS
aspects such as loss and delay.

1.2 APIs in QoS Architecture

Because networks are becoming available which pro-
vide native support for QoS concepts, it is appro-
priate to consider related issues such as the mech-
anisms by which applications can best utilize these
network based QoS concepts in support of user level
QoS requirements. For the majority of software
based network applications, the application develop-
ers make use of such network based QoS guarantees
through some form of Application Programming In-
terface (API).

APIs with QoS concepts are required at various in-
terfaces within a larger system or application wide
QoS Architecture. Various QoS architectures and
other abstractions have been proposed in the liter-
ature (see e.g. [4, 5, 6]). [7] proposes that QoS archi-
tecture concepts are required to span OSI layers 1-7
and also addresses aspects such as:

e orchestration of multiple information flows with
related QoS bounds (e.g. relative jitter between
component media streams of an integrated ser-
vice),

QoS negotiation, renegotiation and degradation
indications,

e reservation of end system and network resources,
e policing of these resources,
e connection admission policies,

e resource control, monitoring and regulation for
support of distributed integrated service (e.g.
multimedia) systems

[8] arranges the elements in a pipeline in order to
allocate delay budgets to the various components in
the overall system. One of the interesting aspects of
this specific implementation was that, although de-
terministic guarantees derived from queuing models
(e.g. as provided by ATM switches) were desired,
the host’s I/O subsystem was not able to provide de-
terministic delay guarantees, and so only statistical
guarantees could be provided end-to-end. QoS guar-
antees of a statistical nature (rather than determinis-
tic) may be important until the software environment
can also support deterministic guarantees.

2 API case studies

In this paper we consider several APIs which pro-
vide QoS guarantees for network services. Our intent
here is not to provide an exhaustive list of APIs which
provide some form of QoS support. In selecting APIs
we looked for APIs which were clearly specified, and
had some implementations available to provide the
basis for further comparisons. QOur preference has
been to consider APIs which support QoS concepts
which are well defined, e.g., ATM or the IETF’s Inte-
grated Services model. The APIs we compare in the
later sections of the paper are:

¢ RSVP
e Native ATM
e Arequipa

For some cases, code examples of were given to illus-
trate the process of setting up a reservation. Those
examples are heavily trimmed, do no error checking,
and some parts of the code are only hinted at by
comments.



2.1 RSVP

The Internet Engineering Task Force (IETF) has de-
fined an architecture for providing integrated services
on the Internet [9]. The protocol used to estab-
lish and maintain reservations is called the “Resource
reSerVation Protocol” (RSVP, [10]).

There is currently only one published API for
RSVP: the API defined by IST and Sun Microsys-
tems (SMI) [11] used in the RSVP implementations
by ISI and by SMIL.!

Since the services provided by and used with RSVP
and the API are both still work in progress, the
respective current versions may differ slightly from
what is described in this paper.

RSVP carries traffic descriptions (called TSpecs),
information about the network (called Adspecs), and
the actual reservation parameters in flow specs (see
[12] for details). Flows are selected using filter specs.
The ISI/SMI RSVP API provides access to exactly
the data conveyed in RSVP messages, i.e. for each
flow, each sender can provide a TSpec and an Adspec,
and each receiver can provide filter specs and flow
specs. The numerical values are identical to the val-
ues contained in the RSVP messages. Additionally,
placeholders for extensions such as explicit packet for-
mat templates and policy information are defined.

While there is no abstraction for the reservation in-
formation, the API hides protocol activities like con-
tinuous refreshes from the application. It does how-
ever generate asynchronous notifications in the event
of changes in the reservation state, e.g. if a reserva-
tion succeeds, fails, or changes.

The API design follows the design of RSVP in that
the mechanisms for reservation setup and for the ac-
tual flow setup are independent. Note that this can
be used to set up reservations on behalf of other pro-
grams, which is nicely illustrated by the tkrsvp ap-
plication (ISI).

Example:

#define TTL 10

struct sockaddr_in dest;
struct sockaddr_in host;

1ftp://ftp.isi.edu/rsvp/release and

//playground.sun.com/pub/rsvp

ftp:

rapi_tspec_t tspec;
int rapi_errno;

/* set dest (gethostbyname, etc.) */

sid = rapi_session(&dest,0,0,NULL,NULL,
&rapi_errno) ;

host.sin_family = AF_INET;

host.sin_addr.s_addr = htonl (INADDR_ANY) ;

host.sin_addr.s_port = 0;

tspec.form = RAPI_FLOWSTYPE_CSZ;

tspec.len = sizeof(qos_tspecx_t);

tspec.tspecbody_qosx.spec_type =
QOS_GUARANTEED;

tspec.tspecbody_qosx.xtspec_r = 5300;
tspec.tspecbody_qosx.xtspec_b = 900;
tspec.tspecbody_qosx.xtspec_p = 14617;
tspec.tspecbody_qosx.xtspec_m = 60;
tspec.tspecbody_qosx.xtspec_ M = 572;

rapi_sender(sid,o,&host,NULL,&tspec,NULL,
NULL,TTL) ;

2.2 Native ATM

APIs for “native ATM” allow applications to estab-
lish ATM connections and to control the QoS pa-
rameters that are chosen for the connections. Na-
tive ATM APIs normally don’t distinguish between
the actual reservation and connection establishment,
because a connection and the corresponding reserva-
tion are set up at the same time in the ATM net-
work too. Furthermore, as of UNI 3.1 and UNI 4.0
([13, 14]), connection parameters can’t be modified
once the connection is established. A connection’s
QoS therefore remains fixed for its entire lifetime.

2.2.1 Semantic description

The document [15] specifies the semantic definition of
ATM-specific services that are available to software
programs and hardware residing in devices on the
user side of the ATM User-Network Interface. The
ATM environment provides new services to the ap-
plication developer. They allow enhancements in per-
formance and specification of network characteristics.
Such ATM-specific services are denoted by the term
“Native ATM Services”.

“Semantic” means that the document describes the
services in a way that is independent of any program-



ming language or operating system environment. Se-
mantic specifications for generic services define vari-
ous aspects of the interface to those underlying ser-
vices. Here we will focus on the call establishment.
This is the step where the Quality of Service neces-
sary for the user application are defined. The current
specification is based on version 3.1 of the UNI ([13]).

Call Establishment Via the ATM_associate_
endpoint primitive, the application first acquires a
local connection endpoint with which primitives for
using native ATM services may be exchanged. The
endpoint_identifier returned from this primitive
is used in the future to identify the newly acquired
connection endpoint, for outbound as well as inbound
call establishment.

Below, the negotiation of connection attributes is
described separately for outgoing and for incoming
connections.

Outbound The application signals its intent to
initiate an outgoing call, via the ATM_prepare_
outgoing_call primitive. In response, the connec-
tion endpoint creates data structures that initially
hold default values for various connection attributes.
Examples of connection attributes include the AAL
type, forward peak cell rate, and QoS class. The com-
plete list of connection attributes is defined in Annex
A of [15]. The application may examine any of these
default connection attributes via the ATM_query_
connection_attributes primitive. In addition, the
application may optionally modify some of these at-
tributes via the ATM_set_connection_attributes
primitive.

Depending on the implementation, each of these
attributes may or may not be settable by the ap-
plication. Also, the value to which the application
attempts to set a given connection attribute may be
modified by the connection endpoint, due to local
resource constraints or the local implementation of
Native ATM Services.

When the application is satisfied with the connec-
tion attributes, as represented by the connection end-
point, then a call is placed across the ATM network.
The application initiates this via the ATM_connect_

outgoing_call primitive. Included as a parameter
of this primitive is destination_SAP.

Native ATM Services places the call across the
ATM network to the target ATM device. If a
point-to-point call attempt is successful, then Na-
tive ATM Services signals the application via an
ATM_P2P_call_active primitive.

Inbound The application signals its intent to re-
spond to an incoming call, via the ATM_prepare_
incoming_call primitive.

The application then issues the ATM_wait_omn_
incoming_call primitive to request that incoming
calls be queued and presented to the application.
When such an incoming call does arrive, the connec-
tion endpoint notifies the application via the ATM_
arrival_of_incoming_call primitive.

The application must make a decision as to
whether or not to accept the call. The applica-
tion may examine the connection attributes of the
newly arrived incoming call via the ATM_query_
connection_attributes primitive. In addition, the
application may modify some attributes (as specified
in annex F of UNI 3.1) via the ATM_set_connection_
attributes primitive.

If the application decides to accept the call, the
application invokes the ATM_accept_incoming_call
primitive. Otherwise, the application rejects the call
via the ATM_reject_incoming_call primitive.

Even if call has been accepted, the application
must wait for the ATM network to award the call. Af-
ter an incoming point-to-point call has been awarded,
the application is notified via the ATM_P2P_call_
active primitive.

2.2.2 WinSock 2

The ATM Forum reviewed the WinSock 2 ATM an-
nex [16, 17] and a mapping from this syntax to the Se-
mantic description [18]. This API currently supports
only AAL5 and user defined AAL types, although it
had been announced that there would be future up-
grades to support other AAL types (e.g. AAL1) as
well as extensions to support UNI 4.0 signaling as
the semantic specification is updated. The WinSock



2 API does not support management plane primi-
tives, but does provide other mechanisms to access
this information.

The QoS structure used in WinSock 2 is contained
in the ProviderSpecific.buf field of the QoS Struc-
ture. Note that use of this ATM-specific structure
is optional by WinSock 2 clients, but if provided, it
takes precedence over any more generic FLOWSPEC
structure. The protocol specific QoS Structure for
ATM is a concatenation of the Q.2931 Information
Elements.

The basic QoS mechanism in WinSock 2 descends
from the flow specification ([19]). Flow specs de-
scribe a set of characteristics about a proposed uni-
directional flow through the network. Flowspecs pro-
vide parameters to indicate what level of service is
required and provide a feedback mechanism for ap-
plications to use in adapting to network conditions.
An application may establish its QoS requirements at
any time up to and including at the time a connection
is established. If the connect operation fails because
of limited resources an error indication is given, and
the application may scale down its service request
and try again or simply give up.

After every connection attempt, transport
providers update the associated flow spec structures
in order to indicate the existing network conditions.
Applications expect to be able to use this informa-
tion about current network conditions to guide their
use of the network, including any subsequent QoS
requests.

WinSock 2 also considers that, even after a flow
is established, conditions in the network may change
or one of the communicating parties may invoke a
QoS renegotiation which results in a reduction (or
increase) in the available service level. A notifica-
tion mechanism is included which utilizes the usual
WinSock notification techniques to indicate to the
application that QoS levels have changed. If the up-
dated level of service is not acceptable, the applica-
tion may adjust itself to accommodate it, attempt to
renegotiate QoS, or close the socket. Note that sup-
port for the functionality described in this paragraph
is implementation-specific and is not provided by the
current ATM extension.

The flow specs proposed for WinSock 2 divide QoS

characteristics into the following general areas:

e Source traffic description;
e Latency (delay and delay variation bounds);

e Level of service guarantee (best effort, controlled
load, predictive service, or (deterministic) guar-
anteed service);

e Cost (this is a placeholder);

e Provider-specific parameters, e.g. ATM QoS def-
initions

QoS templates can be established for well known
media flows e.g. H.323, G.711.

It is up to each service provider to determine the
appropriate values for each element in the QoS struc-
ture, as well as any protocol or media-dependent QoS
extensions. A default flow spec (best effort) is associ-
ated with each eligible socket at the time it is created.

2.2.3 X/Open

Based on the semantic description [15], ATM exten-
sions have been specified for the XTI, XSocket, and
DLPI APIs defined by X/Open.

XTI The syntax instantiation of the semantic de-
scription [15] to XTI is defined in [20].

ATM connection attributes are represented as op-
tions.

These options may be negotiated for a connection
initiated by the transport user. This negotiation may
involve the t_optmgmt () function as well as the use of
options with t_accept (), t_connect (), t_listen(),
and t_rcvconnect ().

XSocket The syntax instantiation of the semantic
description [15] to XSockets is defined in [21]. The
XSocket extensions for native ATM are derived from
the corresponding XTI extensions.

ATM connection attributes are represented as
socket, options.

These options may be negotiated for a connection
initiated by the transport user. This negotiation uti-
lizes the getsockopt () and setsockopt () functions.



DLPI The definition of an instantiation to Data
Link Provider Interface of the Native ATM Services
is a work item of the SAA/API work group of the
ATM Forum, per X/Open request. The connection
management aspects for this specific API syntax are
considered below, although the details may be sub-
ject to change as the specification is refined by the
ATM Forum and X/Open.

Most of the ATM connection attributes can be
queried using DL_INFO_REQ and DL_INFO_ACK. Other
connection attributes are either provided in DLPI
primitives exchanged at connection establishment
time by the DLS user, or they are returned at bind
or connection time by the DLS provider.

Example:

ATL_TO_connect_req V_connect_req;
ATL_T_primitives V_primitive;

memset (&V_connect_req, O,
sizeof (V_connect_req));
V_connect_req.dl_connect_req.dl_primitive =
DL_CONNECT_REQ;
V_connect_req.dl_connect_req.dl_growth = 0;
/* Fill adress part (dl_dest_addr_x, dlsap) */
V_connect_req.dl_connect_req.dl_qos_length =
sizeof (ADL_T_dl_qgos);
V_connect_req.dl_connect_req.dl_qos_offset =
offsetof (ATL_TO_connect_req, qos);
ADL_F_init_dl_qos(&V_connect_req.qos);
/% ... %/
V_connect_req.qos.ATM_Traffic_Descriptor.
tag = ADL_C_valid;
V_connect_req.qos.ATM_Traffic_Descriptor.
fwd_pcr_clpl.tag = ADL_C_valid;
V_connect_req.qos.ATM_Traffic_Descriptor.
fwd_pcr_clpl.value = I_peak_rate;
V_connect_req.qos.ATM_Traffic_Descriptor.
bak_pcr_clpl.tag = ADL_C_valid;
V_connect_req.qos.ATM_Traffic_Descriptor.
bak_pcr_clpl.value = I_peak_rate;
V_connect_req.qos.ATM_Traffic_Descriptor.
best_effort = ADL_C_invalid;
/*x ... %/
ATL_FO_putmsg(I_dl_conn, &V_connect_req,
sizeof (V_connect_req));
ATL_FO_getmsg(I_dl_conn, &V_primitive,
sizeof (V_primitive));
/* V_primitive.primitive indicates success
or failure */

2.3 Arequipa

Arequipa [22, 23] is a mechanism which aims to allow
TCP/IP applications the use of QoS as supported
by ATM networks. Arequipa has been developed at
EPFL since 1995 and it has been implemented on
Linux.

Arequipa allows applications to establish direct
point-to-point end-to-end ATM connections with
given QoS at the link level. These connections are
used exclusively by the applications that requested
them. After setup of the Arequipa connection (i.e.
the ATM SVC that is used for Arequipa), the appli-
cations can use the standard TCP/IP protocol suite
(and its APIs) to exchange data.

Arequipa requires that communicating hosts can
reach each other over both the Internet and an
ATM network. Its scope can be extended to include
hosts without direct ATM connectivity by the use of
application-level gateways.

For practical reasons, Arequipa is based on the na-
tive ATM API described in [24]. Arequipa uses a
pre-defined SAP (Service Access Point) and — as far
as they are invoked from user mode — it performs
all operations in blocking mode. It also handles ac-
ceptance of incoming connections transparently for
the application. Furthermore, future versions of Are-
quipa may not require a user-provided ATM address
and query an address resolution service (e.g. NHRP
[25] or MPOA [26]) instead.

Arequipa can therefore be characterized as provid-
ing full access to the QoS capabilities of the underly-
ing native ATM stack, but as restricting the choice of
endpoints. Figure 1 illustrates how applications use
the Arequipa library to set up ATM connections and
to use them for their TCP/IP traffic.

Example:

struct sockaddr_in addr_in;
struct sockaddr_atmsvc addr_svc;
struct atm_qos qos;

int s;

socket (PF_INET,SOCK_STREAM,0) ;

/* set addr_in (gethostbyname, etc.) */
addr_svc.sas_family = AF_ATMSVC;
text2atm(atm_host_name, (struct sockaddr *)

s =
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Figure 1: Interaction of applications with Arequipa

&addr_svc,sizeof (addr_svc) ,,T2A_SVC |
T2A_NAME) ;
text2qos("cbr,aalb:pcr=100kbps",&qos,0) ;
arequipa_preset (s,&addr_svc,&qos) ;
connect (s, (struct sockaddr *) &addr_in,
sizeof (addr_in));
/* send or receive data */

3 Evaluation

In the following sections, we examine how the QoS
and other abstractions provided by the APIs meet
application needs and how (if) they integrate with
advanced operating system concepts.

3.1 Level of abstraction

All of the APIs we reviewed stay very close to the
service interface the network provides: while they
hide basic protocol mechanisms (e.g. retransmis-
sions) from the applications, they (with the excep-
tion of Arequipa) are very careful not to miss a sin-
gle opportunity to notify the application about any
change in the overall reservation state. Furthermore,
all of the APIs provide exactly the semantics and the
syntax of the traffic characterization and reservation
mechanisms of the respective architecture.

Access to most aspects of the protocol state has
the disadvantage that existing interfaces need to be
stretched very far, either by the introduction of many
new primitives (e.g. RSVP, WinSock 2) or by over-
loading some functions (e.g. X/Open). Given that

most applications only use a very small fraction of
the available functionality, access to some simplified
API is desirable. For RSVP, the tkrsvp package? of-
fers a simplified API for Tk/Tcl programs.

The lack of abstraction in the QoS parameters
raises several problems:

e API users frequently have difficulties character-
izing the traffic their applications generate in the
terminology and in the level of detail used by the
network architecture.

¢ translation of QoS needs of the application to
the interface provided by the APT highly depends
on the reservation architecture, i.e. ATM-based
APIs expect all counts in cells, while RSVP
APIs count in bytes and are also concerned with
packet sizes and slack terms (see also [27] and
[28)).

3.2 QoS dynamics

The life time of QoS settings can be aligned with
different architectural concepts. The following align-
ments are common:

static, e.g. the configuration of an ATM PVC typi-
cally stays the same for hours or longer.

connection, e.g. with UNI 4.0, an ATM SVC keeps
the same QoS parameters until the connection is
close.

modification by signaling, e.g. modification of
connection attributes after setup is specified in
Q.2963.1 [29], but neither UNI 3.1 nor UNI 4.0
include that specification.

modification by traffic control, e.g. the ABR
service specified in [30] gives the sender fine-
grained control over the bandwidth it requests
(within the limits negotiated at connection setup
time)

An application which needs to change the qual-
ity of service over time, corresponding to different

2ftp:/ftp.isi.edu//rsvp/release/app-tkrsvp.reld.
lal.tar.Z



phases of its operation, would benefit from one of the
modification mechanisms. RSVP allows the modi-
fication of reservations for a flow at any time, so it
provides a means to modify by signaling. (RSVP also
supports reservations with different QoS parameters
among leafs in a multicast tree.)

With ATM, neither Q.2963.1 nor ABR are gen-
erally available, so an application has to resort to
either 1) allocate a quality of service which provides
the maximum level of quality it needs at any time, or,
2) manage its session as a succession of connections,
each with a different level of quality.

The first choice guarantees that the desired qual-
ity of service will always be obtained, but more re-
sources than actually used are allocated (and there-
fore wasted), which is likely to result in higher cost
for the user.

The second choice provides a tight resource man-
agement. It allows the resource provider to balance
the unallocated resources and allows the application
user to reduce its expenses, assuming higher level of
quality of service is provided at a higher price, but at
the cost of a more complex connection management,
where connections are set up and tear down during
session lifetime.

The possibility to dynamically re-negotiate QoS
over time during the connection lifetime would avoid
both, wasteful resource use and overly complex con-
nection handling.

3.3 Advanced operating system con-
cepts

QoS support in operating systems is considered pri-
marily from the perspectives of real time support and
concurrency. However, recent work in object based
services may also be relevant as these become sup-
ported by the operating system. It has been proposed
[3] that the following factors be considered in devel-
opment of QoS support for real-time object based
services:

1. policies and mechanisms for specifying end-to-
end applications QoS requirements

2. optimized real-time operating system and net-
work

3. optimized real-time communication protocols

4. optimized real-time request demultiplexing and
dispatching

5. optimized memory management, optimized pre-
sentation layer

3.3.1 Real-time support

In considering real time programming, there is often
a confusion in interpretation of what is required —
the need for a fast implementation of the data trans-
fer versus the need for a specification (explicit or im-
plicit) of the expected delay which is both precise and
accurate. For example, it may be easier to accommo-
date a data transfer mechanism that can provide a
guaranteed delay of 50ms + 5ms, than one that pro-
vides a great deal of variation (e.g average delay of
20ms but a range of 10ms to 100 ms).

The software implementations supporting the APIs
typically attempt to minimize the delay between the
I/0O device and the API. However, the APIs we con-
sidered do not provide means to extend the guaran-
tees to this part of the end-to-end path. [31] and [38]
discuss more advanced architectural approaches.

3.3.2 Concurrency

For QoS-aware network applications, multi-tasking
or multi-threading (i.e. concurrent execution of pro-
grams) are affected by the API in the following areas:

e processing of the application data, and

e control operations

Data processing can be parallelized if the concur-
rent threads can either work on distinct parts of the
data stream or if elements of the data stream have
no sequential inter-dependencies, so any thread can
handle a new element whenever it is ready. The lat-
ter case is trivial, so all APIs we considered support
it.

Automatic demultiplexing of data without involv-
ing the application is more difficult: While all APIs
allow an application to open several flows and to per-
form operations on them, only RSVP can perform



reservations for more than a single flow with one re-
quest. None of the APIs allow marking of data inside
a single flow such that the operating system at the
receiver can distribute the data directly to the thread
that is processing it.

Most flexibility for parallelizing control operations
is reached if no extra serialization of events is enforced
by the API. With the exception of Arequipa, all the
APIs we considered inflict serialization upon the ap-
plications only in negligible ways (e.g. the ATM APIs
serialize incoming connections on the end point de-
scribing the service access point, but allow further
processing to continue in parallel).

3.4 Legacy applications with implicit
QoS requirements

In some cases, the data flow that is supported by
the service quality guarantee does not need to pass
through the same API that was used to specify the
QoS level. One example of this approach is where
legacy applications that are not QoS aware, but have
implicit QoS requirements, are supported by their ex-
isting data plane API, but an additional APT is used
for management plane access to administratively con-
trol the QoS service provided to that application, see
figure 2 (e.g. [32]).

Traditional Legacy

QoS unaware QoS unaware

APl \ appl ication QoS aware

lication

QoS Default QoS P
Management — insertion
API

APl _—% )

supporting Operating

QoS system Protocol stack
Physical interface Hardware

.

Figure 2: Management plane API supporting legacy
applications with implicit QoS guarantees

4 Directions for future work

The diversity of API syntazes can be explained by
the different operating systems within which they
are bound. The diversity of API semantics can be
explained in part by the diversity of reservation pro-
tocols (e.g. soft state vs. hard state) and also by
the level of abstraction of the interface in question.
Three main directions for future work are seen:

e Unification of QoS semantics at the API for dif-
ferent architectures

o Extensions to the semantics of the APIs to cover
data plane redirection

e Extensions of the QoS guarantees provided on
external communications links to internal inter-
process communications mechanisms

e Other software abstractions of QoS

4.1 Unification

Given that all the reservation services aim to support
rather similar types of traffic (e.g. video encoded with
MPEG-1, MPEG-2, or H.261), one could expect that
a common set of parameters exists that the API (or
an API layered on top of it) could translate to the set
of parameters suitable for the reservation mechanism.

This is in sharp contrast to the current situation
(see section 3.1), where APIs for distinct reservation
architectures express QoS parameter in very different
ways — even if they share the same operating system
architecture.

The general QoS interface found in [16] and sim-
plified RSVP API proposed in [33] are perhaps in-
dicative for a trend towards the development of more
abstract and unified APIs.

4.2 Data plane redirection

While most of the work on QoS Architectures to sup-
port multimedia services assume a general processor
as an endpoint, it is also necessary to consider those
applications where the data plane does not need to
pass through the processor, but is destined for some
hardware device — e.g. an MPEG codec. In many
continuous media applications, the data stream from



the network interface simply needs to be redirected
towards the relevant I/O peripherals (e.g. the sound
card or the display card). In this case, the data plane
may have no appearance required at the API, and a
management plane API may suffice. The ATM Fo-
rum SAA/API group is currently considering exten-
sions of this type to the semantic API specification.
The use of peripheral buses such as PCI [34] or PC-
ATM [35] provide support for such approaches. Note
that such buses can often be arranged in a hierarchi-
cal fashion which may complicate the data transfer.
A simple switch abstraction may be the best mech-
anism to mask this potential complexity for the ap-
plication while still supporting a QoS guarantee over
this portion of the data transfer. Desk Area Net-
works [36] are one example of such an architectural
approach.

Video Input Deviceg

Memory,
Storage Devices

Aware Audio 1/0
CcPU Network '/’
Display External
Devices Network -
Gateway

Figure 3: Data plane redirection

Conventional computing performance is measured
in terms of processing power, however such perfor-
mance measures are not necessarily appropriate for
distributed applications such as those shown in fig-
ure 3, where not all the end points of a data flow are
CPUs. Even I/O performance metrics (e.g. [37]) still
assume a processor dependent component, which is
not relevant to the network centric computing model
of figure 3.

4.3 QoS for IPC

The APIs discussed in this paper provided mech-
anisms for QoS support over external interfaces.
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Mechanisms for the support of QoS over internal in-
terfaces is an area of ongoing study topic for oper-
ating systems, particularly distributed operating sys-
tems and those intended to support real time mul-
timedia applications (see e.g. [31, 38, 2]) This case
is made difficult by the variety of different schedul-
ing mechanism that need to be considered within the
QoS architecture — not just the I/O devices, but also
the buffer management, operating system processes
etc. need to be considered.

4.4 1Is an API always the answer?

APIs are not the only programming abstraction that
can be used to provide support to applications that
need QoS support. One could consider also the im-
pact of QoS extensions in other programming ab-
stractions such as the file system or elsewhere in the
memory hierarchy. Most file systems rely primarily
on semantics such as open, close, read, write which do
not have any temporal basis. Extensions to file sys-
tems to support other semantics such as start/play,
stop, pause, fast forward, rewind may also be re-
quired [39] to deal with continuous media types. The
semantics of these operations may have temporal as-
pects that would need to be related to QoS support
in other parts of the operating system.

One could also consider language constructs to sup-
port the use of QoS. QoS concepts are concerned with
guarantees of performance. As such it might be rea-
sonable to consider such guarantees in the light of
language mechanisms to specify operational perfor-
mance. One might reasonably consider QoS exten-
sions to program specifications such as the package
definitions in Ada or the Contracts of Eiffel.

5 Conclusion

We have briefly summarized how APIs for RSVP and
ATM enable applications to control the QoS of their
network connections. We have discussed how well
the APIs reflect the needs of typical applications,
and how they support the use of advanced operat-
ing system concepts. Finally, we propose directions
for further development of QoS-aware APIs, namely



unification of QoS descriptions with better abstrac-
tion from idiosyncrasies of the respective signaling
mechanisms, support for flows not involving the main
processor, and improved means to cover the entire
end-to-end data path with QoS guarantees.
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