
kboot { A Boot Loader Based on Kexe

Werner Almesberger

werner�almesberger.net

September 26, 2005

Abstrat

Compared to the \onsoles" found on tradi-

tional Unix workstations and mini-omputers,

the Linux boot proess is feature-poor, and the

addition of new funtionality to boot loaders

often results in massive ode dupliation. With

the availability of kexe, this situation an be

improved.

kboot is a proof-of-onept implementation

of a Linux boot loader based on kexe. kboot

uses a boot loader like LILO or GRUB to load

a regular Linux kernel as its �rst stage. Then,

the full apabilities of the kernel an be used

to loate and to aess the kernel to be booted,

perform limited diagnostis and repair, et.

1 Oh no, not another boot

loader !

There is already no shortage of boot loaders for

Linux, so why another one ? The motivation for

writing kboot is simply that the boot proess

of Linux is still not as good as it ould be, and

that reent tehnologial advanes have made

it omparably easy to do better.

Looking at traditional Unix servers and work-

stations, one often �nds very powerful boot en-

vironments, o�ering a broad hoie of possible

soures for the kernel and other system �les to

load. It is also quite ommon to �nd various

tools for hardware diagnosis and system soft-

ware repair. On Linux, many boot loaders are

muh more limited than this.

Even boot loaders that provide several of

these advaned features, like GRUB, su�er from

the problem that they need to repliate fun-

tionality or at least ode found elsewhere, whih

reates an ever inreasing maintenane burden.

Similarly, any drivers or protools the boot

loader inorporates, will have to be maintained

in its ontext.

New boot loader funtionality is not only

required beause administrators demand more

powerful tools, but also beause tehnologial

progress leads to more and more omplex meh-

anisms for aessing storage and other devies,

whih a boot loader eventually should be able

to support.

It is easy to see that a regular Linux system

happens to support a superset of all the fun-

tionality desribed above.

With the addition of the kexe system all to

the 2.6.13 mainline Linux kernel, we now have

an instrument that allows us to build boot load-

ers with a fully featured Linux system, tailored

aording to needs and resoures.

Kboot is a proof-of-onept implementation

of suh a boot loader. It demonstrates that new

funtionality an be merged from the vast ode

base available for Linux with great ease, and

without inurring any signi�ant maintenane

overhead. This way, it an also serve as a plat-

form for the development of new boot onepts.

The projet's home page is at http://

kboot.soureforge.net/

The remainder of this setion gives a high-

level view of the role of a boot loader in general,

and what kboot aims to aomplish. Additional

tehnial details about the boot proess, inlud-

ing tasks performed by the Linux kernel when

bringing up user spae, an be found in [1℄.

Setion 2 briey desribes Eri Biederman's

kexe [2℄, whih plays a key role in the operation

of kboot. Setion 3 introdues kboot proper,

explains its struture, and disusses its applia-

tion. Setion 4 gives an outlook on future work,

and we onlude with setion 5.

1.1 What a boot loader does

After being loaded by the system's �rmware, a

boot loader spends a few moments making it-

self omfortable on the system. This inludes

loading additional parts, moving itself to other

memory regions, and establishing aess to de-

vies.



Boot

process

Hard− and firmware

New device drivers
New protocols

Combination of services
New file systems Convenience

Compatible "look and feel"

Administration User experience

Figure 1: The boot proess exists in a world full of hanges and faes requirements from many

diretions. All this leads to the need to ontinuously grow in funtionality.

After that, it typially tries to interat with

the user. This interation an range from

heking whether the user is trying to get the

boot loader's attention by pressing some key,

through a ommand line or a simple full-sreen

menu, to a lavish graphial user interfae.

Whatever the interfae may be, in the end

its main purpose is to allow the user to selet,

perhaps along with some other options, whih

operating system or kernel will be booted. One

this hoie is made, the boot loader proeeds to

load the orresponding data into memory, does

some additional setup, e.g., to pass parameters

to the operating system it is booting, and trans-

fers ontrol to the entry point of the ode it has

loaded.

In the ase of Linux, two items deserve speial

mention: the boot parameter line and the initial

RAM disk.

The boot parameter line was at its inep-

tion intended primarily as a means for passing

a \boot into single user mode" ag to the ker-

nel, but this got a little out of hand, and it is

nowadays often used to pass dozens if not hun-

dreds of bytes of essential on�guration data

to the kernel, suh as the loation of the root

�le system, instrutions for how ertain drivers

should initialize themselves (e.g., whether it is

safe for the IDE driver to try to use DMA or

not), and the seletion of items inluded in a

generi kernel (e.g., disabling ACPI support).

Sine a kernel would often not even boot

without the orret set of boot parameters, a

boot loader must store them in its on�gura-

tion, and pass them to the kernel without re-

quiring user ation. At the same time, users

should of ourse be able to manually set and

override suh parameters.

The initial RAM disk (initrd), whih at the

time of writing is gradually being replaed by

the initial RAM �le system (initramfs), pro-

vides an early user spae, whih is put into

memory by the boot loader, and is thus avail-

able even before the kernel is fully apable to

interat with its surroundings. This early user

spae is used for extended setup operations,

suh as the loading of driver modules.

Given that the use of initrd is an integral

part of many Linux distributions, any general-

purpose Linux boot loader must support this

funtionality.

1.2 What a boot loader should be

like

A boot loader has muh in ommon with the

operating system it is loading: it shares the

same hardware, exists in the same administra-

tive ontext, and is seen by the same users.

From all these diretions originate requirements

on the boot proess, as illustrated in �gure 1.

The boot loader has to be able to aess at

least the hardware that leads to the loations

from whih data has to be loaded. This does

not only inlude physial resoures, but also

any protools that are used to ommuniate

with devies. Firmware sometimes provides a

set of funtions to perform suh aesses, but

new hardware or protool extensions often re-

quire support that goes beyond this.

Above basi aess mehanisms lies the do-

main of servies the administrator an ombine

more or less freely. This begins with �le sys-

tem formats, and gets partiularly interesting



kboot −f

Kernel memory
(before rebooting)

Kernel
code

Kernel memory
(while and after rebooting)

Kernel
code

Jump to kernel setup

Order pages

1 3

Copy file(s) through user space
into kernel memory

file

4

Run kexec reboot
code

2

Figure 2: Simpli�ed boot sequene of kexe.

when using networks. For example, there is

nothing inherently wrong in wanting to boot

kernels that happen to be stored in RPM �les

on an NFS server, whih is reahed through an

IPse link.

Last but not least, whenever users have to

perform non-trivial tasks with the boot loader,

they will prefer a ontext similar to what they

are used to from normal interation with the

system. For instane, path names starting at

the root of a �le system hierarhy tend to be

easier to remember than devie-loal names

pre�xed with a disk and partition number.

In addition to all this, it is often desirable if

small repair work on an unbootable system an

be done from the boot loader, without having

to �nd or prepare a system reovery medium,

or similar.

The bottom line is that a general-purpose

boot loader will always grow in funtionality

along the lines of what the full operating sys-

tem an support.

1.3 The story so far

The two prinipal boot loaders for Linux on the

i386 platform, LILO and GRUB, illustrate this

trend niely.

LILO was designed with the goal in mind of

being able to load kernels from any �le system

the kernel may support. Other funtionality

has been added over time, but growth has been

limited by the author's hoie of implementing

the entire boot loader in assembler.

1

GRUB appeared several years later and

was written in C from the beginning, whih

helped it to absorb additional funtionality

more quikly. For instane, GRUB an diretly

read a large number of di�erent �le system for-

mats, without having to rely on external help,

suh as the map �le used by LILO. GRUB also

o�ers limited networking support.

Unfortunately, GRUB still requires that any

new funtionality, be it drivers, �le systems, �le

formats, network protools, or anything else, is

integrated into GRUB's own environment. This

somewhat slows initial inorporation of new fea-

tures, and, worse yet, leads to an inreasing

amount of ode that has to be maintained in

parallel with its ounterpart in regular Linux.

In an ideal boot loader, the di�erene be-

tween the environment found on a regular Linux

system and that in the boot loader would be

redued to a point where integration of new

features, and their subsequent maintenane, is

trivial. Furthermore, reduing the barrier for

working on the boot loader should also enour-

age ustomization for spei� environments,

and more experimental uses.

The author has proposed the use of the Linux

kernel as the main element of a boot loader in

[1℄. Sine then, �ve years have passed, some of

the tehnology has �rst hanged, then matured,

and with the integration of the key element re-

quired for all this into the mainstream kernel,

work on this new kind of boot loader ould start

in earnest.

1. LILO was written in 1992. At that time, 32-bit real

mode of the i386 proessor was not generally known,

and the author therefore had to hoose between pro-

gramming in the 16-bit mode in whih the i386 starts,

or implementing a fully-featured 32-bit proteted mode

environment, omplete with real-mode allbaks to in-

voke BIOS funtions. After hoosing the less intrusive

of the two approahes, there was the problem that no

suitable and reasonably widely deployed free C ompiler

was available. Hene the deision to write LILO in as-

sembler.



2 Booting kernels with

kexe

One predition in [1℄ ame true almost im-

mediately, namely that major hanges to the

bootimg mehanism desribed there were quite

probable: when Eri Biederman released kexe,

it swiftly replaed bootimg, being tehnologi-

ally superior and also better maintained.

Unfortunately, adoption of kexe into the

mainstream kernel took muh longer than any-

one expeted, in part also beause it underwent

design hanges to better support the very ele-

gant kdump rash dump mehanism [3℄, and it

was only with the 2.6.13 kernel that it was �-

nally aepted.

2.1 Operation

This is a brief overview of the fundamental as-

pets of how kexe operates. More details an

be found in [4℄, [5℄, and also [3℄.

As shown in �gure 2, the user spae tool

kexe �rst loads the ode of the new kernel plus

any additional data, suh as an initial RAM

disk, into user spae memory, and then invokes

the kexe_load system all to opy it into ker-

nel memory (1). During the loading, the user

spae tool an also add or omit data (e.g., setup

ode), and perform format onversions (e.g.,

when reading from an ELF �le).

After that, a reboot system all is made to

boot the new kernel (2). The reboot ode tries

to shut down all devies, suh that they are in

a de�ned and inative state, from whih they

an be instantly reativated after the reboot.

Sine data pages ontaining the new kernel

have been loaded to arbitrary physial loations

and ould not oupy the same spae as the

ode of the old kernel before the reboot anyway,

they have to be moved to their �nal destination

(3).

Finally, the reboot ode jumps to the en-

try point of the setup ode of the new kernel.

That kernel then goes through its initialization,

brings up drivers, et.

2.2 Debugging

The weak spot of kexe are the drivers: some

drivers may simply ignore the request to shut

down, others may be overzealous, and dea-

tivate the devie in question ompletely, and

some may leave the devie in a state from whih

it annot be brought bak to life, be this either

udev

dropbear

kexec

etc.

kboot utils

kboot shell

uClibc

Lean kernel

(sh, cat, mount, ...)
BusyBox

Figure 3: The software stak of the kboot envi-

ronment.

beause the state itself is inorret or irreov-

erable, or beause the driver simply does not

know how to resume from this spei� state.

Many of these problems have not beome vis-

ible yet, beause those drivers have not been

subjeted to this spei� shutdown and reboot

sequene so far.

The developers of kexe and kdump have

made a great e�ort to make kexe work with a

large set of hardware, but given the sheer num-

ber of drivers in the kernel and also in parallel

trees, there are doubtlessly many more prob-

lems still awaiting disovery.

Sine kboot is the �rst appliation of kexe

that should attrat interest from more than a

relatively small group of developers, many of

the expeted driver onits will surfae in the

form of boot failures ourring under kboot.

3 Putting it all together

Kboot bundles the omponents needed for a

boot loader, and provides the \glue" to hold

them together. For this, it needs very little

ode: only roughly 3'000 lines, as of version

4. Already LILO exeeds this by one order of

magnitude, and GRUB further doubles LILO's

�gure.

2

Of ourse, during its build proess, kboot

pulls in various large pakages, among them the

entire GCC tool hain, a C library, BusyBox,

assorted other utilities, and the Linux kernel it-

self. In this regard, kboot resembles more a dis-

tribution like Gentoo or OpenEmbedded, whih

2. These numbers were obtained by quite unsienti�-

ally running w -l on a somewhat arbitrary set of the

�les in the respetive soure trees.



Firmware

kboot

Boot loader

kexec

legacy OS
Reboot to

Main system
("booted environment")

initramfs
Kernel

Figure 4: The boot sequene when using kboot.

onsist mainly of meta-information about pak-

ages maintained by other parties.

3.1 The boot environment

Figure 3 shows the software pakages that on-

stitute the kboot environment. Its basis is a

Linux kernel. This kernel only needs to support

the devies, �le systems, and protools that will

be used by kboot, and an therefore be onsid-

erably smaller than a fully-featured prodution

kernel for the same mahine.

In order to save spae, kboot uses uClib [6℄

instead of the muh larger glib. Unfortunately,

properly supporting a library di�erent from the

one on the host system requires building a ded-

iated version of GCC. Sine uClib is sensitive

to the ompiler version, kboot also builds a lo-

al opy of GCC for the host. To be on the safe

side, it also builds binutils.

After this tour de fore, kboot builds the

appliations for its user spae, whih inlude

BusyBox [7℄, udev [8℄, the kexe tools [2℄, and

dropbear [9℄. BusyBox provides a great many

ommon programs, ranging from a Bourne

shell, through system tools like \mount", to a

omplete set of networking utilities, inluding

\wget" and a DHCP lient. Udev is responsi-

ble for the reation of devie �les in /dev. It

is a user spae replaement for the kernel-based

devfs. The kexe tools provide the user spae

interfae to kexe.

Last but not least, dropbear, an SSH server

and lient pakage, is inluded to demonstrate

the exibility a�orded by this design. This

also o�ers a simple remote aess to the boot

prompt, without the need to set up a serial on-

sole for just this purpose.

3.2 The boot sequene

The boot sequene, shown in �gure 4, is as fol-

lows: �rst, the �rmware loads and starts the

�rst-stage boot loader. This would typially be

a program like GRUB or LILO, but it ould also

be something more speialized, e.g., a loader for

on-board Flash memory. This boot loader then

immediately proeeds to load kboot's Linux

kernel and kboot's initramfs.

The kernel goes through the usual initializa-

tion and then starts the kboot shell, whih up-

dates its on�guration �les (see setion 3.5),

may bring up networking, and then interats

with the user.

If the user hooses, either atively or through

a timeout, to start a Linux system, kboot then

uses kexe to load the kernel and maybe also an

initial RAM disk.

Although not yet implemented at the time of

writing, kboot will also be able to boot legay

operating systems. The plan is to initially avoid

the quagmire of restoring the �rmware environ-

ment to the point that the system an be booted

from it, but to hand the boot request bak to

the �rst stage boot loader (e.g., with lilo -R

or grub-set-default), and to reboot through

the �rmware.

3.3 The boot shell

At the time of writing, the boot shell is fairly

simple. After initializing the boot environment,

it o�ers a ommand line with editing, ommand

and �le name ompletion, and a history fun-

tion for the urrent session.

The following types of items an be entered:

� Names of variables ontaining a ommand.

These variables are usually de�ned in the

kboot on�guration �le, but an also be set

during a kboot session.

3

The variable is

expanded, and the shell then proesses the

ommand. This is a slight generalization of

the label in LILO, or the title in GRUB.

� The path to a �le ontaining a bootable

kernel. Path names are generalized in

kboot, and also allow diret aess to de-

vies and some network resoures. They

3. In the latter ase, they are lost when the session

ends.



Syntax Example Desription

variable my_kernel Command stored in a variable

/path /boot/bzImage-2.6.13.2 Absolute path in booted environment

//path at //et/fstab Absolute path in kboot environment

path d linux-2.6.14 Relative path in urrent environment

devie hda7 Devie ontaining a boot setor

/dev/devie /dev/hda7 Devie �le of devie with boot setor

devie:/path hda1:/bzImage File or diretory on a devie

devie:path hda1:bzImage (impliit /dev/)

/dev/devie:/path /dev/sda6:/foo/bar File or diretory on a devie

/dev/devie:path /dev/sda6:foo/bar (expliit /dev/)

host:/path server:/home/k/bzImage-a File or diretory on an NFS server

http://host/path http://server/foo File on an HTTP server

ftp://host/path ftp://server/foo/bar File on an FTP server

Table 1: Types of path names reognized by kboot.

are desribed in more detail in the next se-

tion. When suh a path name is entered,

kboot tries to boot the �le through kexe.

� The name of a blok devie ontaining the

boot setor of a legay operating system, or

the path to the orresponding devie �le.

� An internal ommand of the kboot shell.

It urrently supports d and pwd, with the

usual semantis.

� A shell ommand. The kboot shell per-

forms path name substitution, and then

runs the ommand. If the ommand uses

an exeutable from the booted environ-

ment, it is run with hroot, sine the

shared libraries available in the kboot envi-

ronment are almost ertainly inompatible

with the expetations of the exeutable.

With the exeption of a few helper programs,

like the ommand line editor, the kboot shell is

implemented as a shell sript.

3.4 Generalized path names

Kboot automatially mounts �le systems of

the booted environment, on expliitly spei�ed

blok devies, and { if networking is enabled

{ also from NFS servers. Furthermore, it an

opy and then boot �les from HTTP and FTP

servers.

For all this, it uses a generalized path name

syntax that reets the most ommon forms of

speifying the respetive resoures. E.g., for

NFS, the host:path syntax is used, for HTTP, it

is a URL, and paths on the booted environment

look just like normal Unix path names. Table

1 shows the various forms of path names.

Absolute paths in the kboot environment are

an exeption: they begin with two slashes in-

stead of one.

We urrently assume that there is one prini-

pal booted system environment, whih de�nes

the \normal" �le system hierarhy on the ma-

hine in question. Support for systems with

multiple booted environments is planned for fu-

ture versions of kboot.

3.5 Con�guration �les

When kboot starts, it only has aess to the

on�guration �les stored in its initramfs. These

were gathered at build time, either from the

user (who plaed them in kboot's onfig/ di-

retory), or from the urrent on�guration of

the build host.

This set of �les inludes kboot's own on-

�guration /et/kboot.onf, /et/fstab, and

/et/hosts. The kboot build proess also adds

a �le /et/kboot-features ontaining set-

tings needed for the initialization of the kboot

shell.

Kboot an now either use these �les, or it

an, at the user's disretion, try to mount the

�le system ontaining the /et diretory of the

booted environment, and obtain more reent

opies of them.

The deision of whether kboot will use its

own opies, or attempt an update �rst, is made

at build time. It an be superseded at boot time

by passing the kernel parameter kboot=loal.



/etc/fstab
/etc/hosts

kboot.conf
Build environment

kboot

kboot.conf
fstab
hosts

Mount /etcCopy latest
versions

Booted
environment

Figure 5: Con�guration �les used by kboot.

3.6 When not to use kboot

While kboot it designed to be a exible and

extensible solution, there are areas where this

type of boot loader arhiteture does not �t.

If only very little persistent storage is avail-

able, whih is a ommon situation in small em-

bedded systems, or if large enough storage de-

vies would be available, but annot be made

an integral part of the boot proess, e.g., re-

movable or unreliable media, only a boot loader

optimized for tiny size may be suitable.

Similarly, if boot time is ritial, the time

spent loading and initializing an extra kernel

may be too muh. The boot time of regu-

lar desktop or server type mahines already

greatly exeeds the minimum boot time of a

kernel, whih embedded system developers aim

to bring well below one seond [10℄, so loading

another kernel does not add signi�ant over-

head, partiularly if the streamlining proposed

below is applied.

Finally, the large hidden ode base of kboot

is unsuitable if high demands on system relia-

bility, at least until the point when the kernel

is loaded, require that the number of software

omponents be kept to a minimum.

3.7 Extending kboot

The most important aspet of kboot is not the

set of features it already o�ers, but that it

makes it easy to add new ones.

New devie drivers, low-level protools (e.g.,

USB), �le systems, network protools, et., are

usually diretly supported by the kernel, and

need no or only little additional support from

user spae. So kboot an be brought up to date

with the state of the art by a simple kernel up-

grade.

Most of the basi system software runs out

of the box on virtually all platforms supported

by Linux, and partiularly distributions for em-

bedded systems provide pathes that help with

the oasional ompatibility glithes. They

also maintain ompat alternatives to pakages

where size may be an issue.

Similarly, given that kboot basially provides

a regular Linux user spae, the addition of new

ornaments and improvements to the user inter-

fae, whih is an area with a ontinuous demand

for development, should be easy.

When porting kboot to a new platform, the

foremost { and also tehnially most demand-

ing { issue is getting kexe to run. One this is

aomplished, interation with the boot loader

has to be adapted, if suh interation is needed.

Finally, any administrative tools that are spe-

i� to this platform need to be added to the

kboot environment.

4 Future work

At the time of writing, kboot is still a very

young program, and has only been tested by

a small number of people. As more user feed-

bak arrives, new lines of development will

open. This setion gives an overview of ur-

rently planned ativities and improvements.

4.1 Reduing kernel delays

The Linux kernel spends a fair amount of time

looking for devies. In partiular, IDE or SCSI

bus sans an try the patiene of the user, be-

ause they repeat similar sans already done by

the �rmware. The use of kboot now adds an-

other round of the same.

A straightforward mehanism that should

help to alleviate suh delays would be to predit

their outome, and to stop the san as soon as

the list of disovered devies mathes the pre-

dition. Suh a predition ould be made by

kboot, based on information obtained from the

kernel it is running under, and be passed as a

boot parameter to be interpreted by the kernel

being booted.

One this is in plae, one ould also envision

on�guring suh a predition at the �rst stage

boot loader, and passing it diretly to the �rst

kernel. This way, slow devie sans that are



known to always yield the same result ould be

ompletely avoided.

4.2 Using a real distribution

The extensibility of kboot an be further in-

reased by replaing its build proess, whih is

very similar to that of buildroot [11℄, with the

use of a modular distribution with a large set

of maintained pakages. In partiular OpenEm-

bedded [12℄ looks very promising.

The reasons for not reusing an existing build

proess already from the beginning were mainly

that kboot needs tight ontrol over the on-

�guration proess (to reuse kernel on�gura-

tion, and to propagate information from there

to other omponents) and pakage versions (in

order to know what users will atually be build-

ing), the sometimes large set of prerequisites,

and also problems enountered during trials.

4.3 Modular on�guration

Adding new funtionality to the kboot environ-

ment usually requires an extension of the build

proess and hanges to the kboot shell. For

ommon tasks, suh as the addition of a new

type of path names, it would be desirable to be

able to just drop a small desription �le into the

build system, whih would then interfae with

the rest of kboot over a well-de�ned interfae.

Regarding modules: at the time of writing,

kboot does not support loadable kernel mod-

ules.

5 Conlusions

Kboot shows that a versatile boot loader an be

built with relative little e�ort, if using a Linux

kernel supporting kexe and a set of programs

designed with the spae onstraints of embed-

ded systems in mind.

By making it onsiderably easier to synhro-

nize the boot proess with regular Linux devel-

opment, this kind of boot loader arhiteture

should failitate more timely support for new

funtionality, and enourage developers to ex-

plore new ideas whose implementation would

have been onsidered too tedious or too arane

in the past.

Referenes

[1℄ Almesberger, Werner. Booting Linux: The

History and the Future, Proeedings of

the Ottawa Linux Symposium 2000, July

2000. http://www.almesberger.net/v/

papers/ols2k-9.ps

[2℄ Biederman, Eri W. Kexe tools and

pathes. http://www.xmission.om/

~ebiederm/files/kexe/

[3℄ Goyal, Vivek; Biederman, Eri W.; Nel-

litheertha, Hariprasad. Kdump, A Kexe-

based Kernel Crash Dumping Mehanism,

Proeedings of the Ottawa Linux Sym-

posium 2005, vol. 1, pp. 169{180, July

2005. http://www.linuxsymposium.org/

2005/linuxsymposium_prov1.pdf

[4℄ P��er, Andy. Reduing System Re-

boot Time with kexe, April 2003.

http://www.osdl.org/arhive/andyp/

kexe/whitepaper/kexe.pdf

[5℄ Nellitheertha, Hariprasad. Reboot Linux

Faster using kexe, May 2004. http:

//www-128.ibm.om/developerworks/

linux/library/l-kexe.html

[6℄ Andersen, Erik. uClib. http://www.

ulib.org/

[7℄ Andersen, Erik. BUSYBOX. http://

busybox.net/

[8℄ Kroah-Hartman, Greg; et al. udev.

http://www.kernel.org/pub/linux/

utils/kernel/hotplug/udev.html

[9℄ Johnston, Matt. Dropbear SSH server

and lient. http://matt.u.asn.au/

dropbear/dropbear.html

[10℄ CE Linux Forum. BootupTimeRe-

soures, CE Linux Publi Wiki. http:

//tree.elinuxforum.org/pubwiki/

moin.gi/BootupTimeResoures

[11℄ Andersen, Erik. BUILDROOT. http://

buildroot.ulib.org/

[12℄ OpenEmbedded. http://oe.handhelds.

org/


