Cryptographic Authentication of Responses in ATM Traffic

Control Protocols

Werner Almesberger

werner.almesberger@lrc.di.epfl.ch

Laboratoire de Réseaux de Communication (LRC)
EPFL, CH-1015 Lausanne, Switzerland

February 28, 1996

Abstract

The control flow of ATM traffic control protocols
frequently includes untrusted elements (e.g. end
systems), but there is no proper validation of their
responses. This paper discusses the problem, de-
scribes possible solutions, and proposes the use of
a cryptographic authentication scheme with very
good scaling properties. Requirements for the cryp-
tographic algorithm are specified, applicability of
that concept to several usage scenarios is examined,
and necessary architectural extensions to the traffic
control protocol are illustrated on the example of
ABT/VT.

1 Introduction

Many traffic control protocols for ATM include un-
trusted elements such as “private” networks or end
systems in the flow of control information by having
the network send them RM cells [1] containing re-
quests or acknowledgements which the end systems
are expected to return to the network afterwards.
In the following, we will focus mainly on end sys-
tems, but the concept applies equally to untrusted
branches of the network. The end system is typi-
cally expected to either return such cells unaltered
or to perform a restricted set of operations on them,
e.g. to reduce the requested resource allocation.
This can be illustrated on the example of the
ABT/VT [2] protocol, where the source emits reser-
vation requests, which are forwarded hop by hop

to the destination. The network and the desti-
nation may reduce the resources requested. The
destination returns the reservation requests (they
are now called “reservation acknowledgements”)
through the network back to the source and finally,
the source sends them again, this time to claim the
reservation that has been acknowledged by the net-
work and by the destination. See also figure 1.

Source Ingress Egress Destination

%

eme\'\
eseN aon W
‘y

g

— aim
%&

Figure 1: Message flow in ABT/VT

The ABT/VT terminology (namely “request”,
“acknowledgement”, and “claim”) will be used
throughout this paper for the corresponding seman-
tics. This does, however, not restrict applicability
of the concepts discussed herein to that particular
protocol.

Potential dangers

Protocols that include end systems in the control
flow have the problem that, while the network is
usually considered trustworthy, the end system or
possibly even two (or, for multicast, even more)
cooperating end systems may, be it by accident
or intentionally, send acknowledgements or claims
that exceed the resources that have previously been
granted by the network. If this goes undetected, it
may result in unfairness or worse.

There are several ways to resolve this problem,

e.g.

e keep control flows inside the network, possibly
adding a local control flow for the end system

e examine all responses from end systems for va-
lidity

e base traffic policing solely on what has been
granted by a trustworthy party

e the most common approach: ignore it

While the use of several control flows can be im-
portant for the wide area [3], it adds more complex-
ity than would be desirable for protection against
misbehaving end systems. Basing traffic policing
only on trusted information may be as difficult as
validating all end system responses, see below.!
Simply ignoring the problem may be a very reason-
able approach for networks where a certain amount
of cooperation and tolerance can be expected. Un-
fortunately, this is not applicable to cases where
“hard” service guarantees are required.

Validation of responses

End system responses can be validated either by
verifying general properties (e.g. if they exceed the
bandwidth that has been granted for the last few
requests), or by validating each individual message.
“Generalization” tends to become less accurate or
to require more hardware when more requests are

in transit because round-trip time increases. This
can be avoided by only allowing a limited number of
messages to be present in the network at the same
time (e.g. ABT/DT [4], [1]), but this is not univer-
sally applicable. Validating based on remembering
exactly what has been sent and by looking up in-
coming responses has scalability problems too, i.e.
it requires storing information for the duration of
one round-trip between the point where the valida-
tion is performed and the end system.?

We propose the use of cryptographic methods to
ensure validity of end system responses. The net-
work itself it used to “store” the information needed
to perform the validation, so the system that per-
forms the validation does not incur the scalability
problems associated with other approaches.

2 Operation

The concept of using cryptographic means to en-
sure integrity and authenticity of messages is well-
established for higher protocol layers (e.g. [5], [6],
[7])- Recently, the use of cryptographic authentica-
tion has also become increasingly popular for com-
parably short-lived data, e.g. IP datagrams [8].

Concept

The general concept is to validate end system re-
sponses (R) based on the content of the original
message (O) they received. This is done by us-
ing a function that determines if R € M, with M
being the set of possible modified values the end
system may return in response to 0. The part
of O relevant for validation is carried in R and is
protected against tampering by a message authen-
tication code (MAC; i.e. a secure keyed one-way
hash).?

For authentication, a secret key (i.e. unknown
to the end system) is used to modify the result of

1. Note that protocols like ABT /VT simplify traffic polic-
ing by using RM cells to announce traffic changes.

2. But it may be good enough if the number of outstanding
responses is always very small, e.g. in LANSs.

3. More sophisticated approaches where the encryption al-
gorithm itself helps to confine possible manipulations (e.g.
along the lines of the algorithm used by S/KEY [6]) might
deserve further consideration.

the hash function.* If the end system must be able
to modify the data passed in the message, it can
store the modified data in an unprotected message
region and the network can then verify validity of
the modification and copy the modified data into
the trusted section of the message. Figure 2 illus-
trates the general message structure for O and R.

Header | Protected | MAC

data

Unprotected
data

Figure 2: General structure of RM cells with a mes-
sage authentication code

Storing the protected data at the beginning of
the message gives the validation function more time
for the accept/reject decision.

If an inconsistency is found, the corresponding
information is ignored and flagged as invalid or ab-
sent. The cell is discarded if it carries no other
relevant information.

Algorithms

The algorithm given below illustrates the proce-
dure. C is the cell being processed, C.Mis the MAC,
C.P is the protected data area, C.U is the unpro-
tected data area, and S is the secret key. hash() is
the secure hash function, mod () is the local function
used to modify (e.g. degrade) a request, check () is
the function that decides whether its second argu-
ment is a valid modification of its first argument,
and send() is the function that performs normal
sending or forwarding of the RM cell.

The system performing the validation executes
the following operations when sending towards the
end system:

C.P = mod(C.P);
C.M = hash(S,C.P);
send(C) ;

When receiving from the end system:

if (hash(S,C.P) != C.M) error;
if (!'check(C.P,C.U)) error;
send(C) ;

And the end system simply does:

C.U = mod(C.P);
send(C) ;

Attacks

Any such authentication method has to be robust
against:

e replay attacks

e use of messages in an incorrect context
e attempts to obtain the secret key

e attempts to use an equivalent key

e attempts to guess a valid MAC

Replay attacks can be avoided by using a strictly
monotonously increasing sequence number. The
sequence number has to be part of the protected
data. To limit the sequence number space (e.g. to
32 bits), sequence numbers can be reused if the se-
cret key is changed at least whenever the sequence
number wraps. (See below for how to change keys.)

A similar type of attack is to use contents of a
message not pertaining to the same connection, e.g.
a message (possibly of a different type) received
on a different VC or even a message received by a
different host. In order to protect against that, a
different key should be used for each connection. If
breaking the secret key can be considered as hard,
it would be sufficient to generate one “good” (i.e.
sufficiently random) key per end system or even
per switch, and to include the connection identifier
(VPI and VCI) in the MAC.

The key is protected by the strength of the hash
function. Also, the probability of finding a different
key that results in the same MAC depends mainly
on the hash function. Besides choosing a reason-
ably strong hash function,® the protection can be
improved by regularly changing the secret key. The
key change can be synchronized by using the se-
quence number, which therefore should be stored at
the beginning of the protected data. Key changes
should be rare enough that it would be sufficient to
use only two keys (old key and new key) at a time.
Furthermore, the key must be difficult to guess (see
also [9]).

4. Note that, given that the key may have to be cho-
sen based on the sequence number (see below), using a
constant initial seed and hashing the secret key after the
sequence number has been received may yield a efficient
implementation.

5. Note that the hash function also has to resist chosen
plaintext attacks.

3 Usage scenarios

The concept presented above is mainly suitable for
scenarios where a branch of the network (e.g. a
private network attached to a public network) is
not trusted by the rest of the network, but nodes
belonging to that branch, including the end system,
trust each other, see figure 3. We call the flow
of control information from the system performing
the validation to the end system and back to the
validating system a “protected loop”.

Private network

[

Es|)
/

Protected loop

Is - s B
-

Public network

¢

Figure 3: Example of the generalized scenario

Nested loops

The use of a second protected loop, e.g. between
the private network and the end system (see figure
4) appears to be a natural and desirable extension
of the concept.

If both, the system at the outer loop and the
system at the inner loop need to be able to detect
invalid responses, space for the MAC and for the
protected data has to exist for each loop.

Inner protected loop

Private network

IS tlis oo s ES D)

-

Public network

Outer protected loop

Figure 4: Double protected loop

If it is sufficient to perform the actual validation
only at a single point (at the system the farthest
away from the end system), only copying of the part
of protected data that can be changed, and merging
of both MACs (see below) is required.® The dashed
line in figure 4 indicates how the detection of invalid
responses is delayed by this simplification.

Each additional level of protection requires copy-
ing of the same amount of data, thereby making it
unrealistic to support more than a very small num-
ber of levels. For completeness, an algorithm for an
arbitrary number of levels is given below.

Note that the cryptographic approach can of
course be mixed with other approaches, e.g. a small
table for verifying responses may be sufficient at a
switch talking to a workstation, and the more pow-
erful cryptographic authentication could be used
only at a network-network boundary.

Algorithm for nested loops

The following algorithm handles an arbitrary num-
ber of protection levels. The system performing
validation on the outmost loop is expected to do
all the error checking for the other systems. In ad-
dition to the fields and functions already defined,
the copy area C.F is added, which is organized as
a LIFO with the operations push() and pop() to
add or to remove elements, respectively. Signal-
ing is assumed to handle limiting of the number of
levels.

The system at the outmost loop and the end sys-
tem use the same algorithm as for the single-loop
case. Depending on the implementation, the sys-
tem at the outmost loop may have to initialize F.

Each system that adds validation for an inner
loop uses the following algorithm when sending to-
wards the end system:

push(C.F,C.P);

C.P = mod(C.P);
C.M "= hash(S,C.P);
send(C) ;

When receiving from the end system:

6. Note that this protection is only good enough to pre-
vent attempts to obtain a better service than allowed, but
that the inner system is still susceptible to denial of service
attacks.

C.M "“= hash(S,C.P)

if (!'check(C.P,C.U)) error;
C.P = pop(C.F)

send (C) ;

4 The secure hash function

The secure hash function must fulfill the following
requirements:

e it must be sufficiently “hard” to resist at-
tempts to break it during the life time of a key
(in particular, chosen plaintext attacks need to
be considered)

¢ its properties must be well understood in order
to be reasonably sure that no simple attacks
will be found in the near future

¢ it must be quickly computable; ideally it would
process data at the rate at which it arrives

¢ its implementation must not be inherently ex-
pensive

MAC and secret key size

The MAC size must only be sufficient to protect
against successful “guessing” of a valid MAC.” The
protection can be strengthened by monitoring re-
peated failure to guess the MAC and by simply
disconnecting the misbehaving party.

The secret key must be sufficiently large to be
unlikely to be broken within a key change interval.

Exact values depend on environmental param-
eters (e.g. desired strength of protection, attack
frequency, number of attackers).

Choosing an algorithm

Most of the secure hashing algorithms given in stan-
dard cryptography literature [12] are cryptograph-
ically strong but even the fastest ones tend to be
comparably expensive to calculate, e.g. the MD5
algorithm [10] (see also [11]).

The use of cryptographically weaker algorithms
should be studied for cases where stronger algo-
rithms are too complex or too slow. Combined
with frequent key changes (e.g. once every few sec-
onds®) and the use of independently generated keys
for each connection, even a weak protection may be
sufficient.

5 Case study

The changes in message formats when using MACs
for traffic control response validation is studied in
this section on the example of the ABT/VT proto-
col. The same concepts can be readily applied to
similar protocols, such as ABR [3] or ABT/DT®.

Message format

ABT/VT uses three messages with the following
fields:

e reservation request: requested cell rate (RCR)
and requested block size (RBS)

e reservation acknowledgement: reserved cell
rate (RCR) and reserved block size (RBS)!°

e reservation claim: claimed cell rate (CCR)
and claimed block size (CBS)

Furthermore, a reservation request and a reser-
vation claim can be merged into the same message.

Protection is necessary in two cases: (1) when
the destination turns a request into an acknowl-
edgement, and (2) when the source turns an ac-
knowledgement into a claim.

Because it is desirable to store protected data
near the beginning of the cell, we use fixed locations
based on their protection, and the effective location
of R (RCR and RBS) and C (CCR and CBS)
varies depending on the security needs in a given
context. In addition to the actual traffic control
information, we also need a message type byte, the
sequence number, the MAC (e.g. MD5 folded into
8 bytes), and a CRC. Figure 5 shows the complete
cell payload.

7. The MAC should be as small as possible, given that
typically only 48 bytes are available to store header, traffic
control information, sequence number, MAC, and usually
also a CRC.

8. If only one pending key change is allowed at a time, the
key can be changed after at least one round-trip (along the
protected loop) plus the maximum queuing and processing
delays.

9. In cases 3 and 4 explained in annex C of [1]

10. Those fields have the same name in request and ac-
knowledgement messages, because they’re actually the same
variable: a reserved entity is just a requested entity after all
involved parties have accepted or degraded the request.

12. Note that [2] does not specify the exact cell format, so
“worst case” sizes have been chosen for some fields.

Protocol identifier 1 byte

Message type 1 byte
Sequence number 4 bytes
Trusted cell rate 4 bytes
Trusted block size 4 bytes
MAC 8 bytes
Untrusted cell rate 4 bytes
Untrusted block size | 4 bytes
Reserved 16 bytes
CRC-10 2 bytes

Figure 5: RM cell payload for ABT/VT with a
MAC!?

Processing

Figure 6 illustrates the processing necessary to ver-
ify correct end system behaviour in the two cases
described above. Each message contains the fol-
lowing fields (from left to right): trusted data, the
MAC, and untrusted data. The trusted data field
may contain untrusted data if there is no MAC.
Field contents are labeled as follows: R is a request
block, R' is a modified request block (i.e. an ac-
knowledgement), C is a claim block, and X, Y, and
Z are MACs.

Source — Ingress— Egress— Destination

Initial request 4’

/
(RIX] - -|R[X]-
Acknowledgement - | - R RIX]|R R X]|R
/
IT Y]- - [RIY] -]
Clamwith — [CTv]R|~[c[Y]R|—~[c[-[R]
request f

[rR[z]c|-{rR][Z]C]
efc.

Figure 6: Authentication processing for ABT/VT

The source emits the first reservation request,
containing only the request block. That request
propagates through the network, where it may be
degraded at each switch. The egress switch copies
the request block to the trusted data area, assigns

the sequence number,'® computes the MAC X, and
sends the reservation request to the destination.

The destination copies the requested cell rate
into the untrusted data area, yielding R'. It may
also degrade the request at the same time. The re-
sulting reservation acknowledgement is sent to the
egress switch, where the validity of X and R’ is
checked, i.e. that R’ < R. If the message passes the
check, it is forwarded through the network to the
ingress switch. Note that the values of the trusted
data area and of the MAC only have a meaning
to the egress switch and become therefore irrele-
vant when the message is sent towards the ingress
switch. The ingress switch copies the reservation
information to the trusted data area, computes the
MAC Y, and sends the reservation acknowledge-
ment to the source.

When the source decides to issue the reserva-
tion claim, it adds a new request and sends the
combined request and claim message to the ingress
node. The name change from R’ to C only reflects
the difference in meaning.!* The ingress switch ver-
ifies the MAC, optionally degrades the request part,
and sends the message to the egress node. Again,
the MAC becomes useless after the message has
left the ingress switch. The egress switch swaps the
trusted and the untrusted data areas, computes the
MAC Z, and forwards the message to the destina-
tion, which then continues as described above.

6 Conclusion

The need to validate responses from end systems
which are part of the control loop of ATM traffic
control protocols has been identified and we pro-
pose a scalable method that is based on crypto-
graphic message authentication.

The mechanisms necessary to implement such
validation have been described at the conceptual
level and various aspects for choosing the secure
hash function, the MAC size, and the number of
random bits in the secret key have been discussed.

13. If multiple nested loops are allowed, the sequence num-
ber should be generated by the source or by the ingress
switch. For simplicity, we assume in this example that each
loop is independent of all the others.

14. ABT/VT allows no modification of the reservation at
that point.

As an illustration, the use of MD5-based authenti-
cation for ABT/VT has been described.

This paper does not attempt to give a conclud-
ing statement on the choice of the secure hash func-
tion or the MAC size, but suggests further research,
particularly in the area of algorithms that are con-
sidered “too weak” for classical cryptography ap-
plications.

7 Acknowledgements

The author thanks Germano Caronni for very help-
ful discussions on contemporary cryptography, and
Jean-Yves Le Boudec for valuable advice and sug-
gestions.

References

[1] ITU-T Recommendation 1.371. Traffic con-
trol and congestion control in B-ISDN (Perth
draft), ITU, November 1995.

[2] Almesberger, W.; Le Boudec, J.-Y.; Man-
thorpe, S. An ABT based ABR service for
ATM, Technical Report to appear, EPFL,
February 1996.

[3] The ATM Forum, Traffic Management Work-
ing Group. ATM Forum Traffic Management
Specification Version 4.0, ATM Forum contri-
bution 95-0013R10, 1996.

[4] Boyer, P.; Tranchier, D. A Reservation Princi-
ple with Applications to the ATM Traffic Con-
trol, Computer Networks and ISDN Systems,
vol. 24, pp. 321-334, 1992.

[6] Zimmermann, P. The official PGP wuser’s
guide, MIT Press, 1995.

[6] Haller, N. M. The S/KEY One-Time Pass-
word System, ftp://ftp.bellcore.com/
pub/nmh/docs/ISOC.symp.ps, Bellcore,
October 1993.

[7] Kohl, J.; Neuman, C. The Kerberos Net-
work Authentication Service (V5), RFC1510,
September 1993.

[8] Atkinson, R. Security Architecture for the In-
ternet Protocol, RFC1825, August 1995.

[9] Eastlake, D.; Crocker, S.; Schiller, J.
Randomness Recommendations for Security,
RFC1750, December 1994.

[10] Rivest, R. The MD5 Message-Digest Algo-
rithm, RFC1321, April 1092.

[11] Touch, J. Report on MD5 Performance,
RFC1810, June 1995.

[12] Schneier, B. Applied cryptography, Wiley,
1996.

