Linux ATM device driver interface
Draft, version 0.1*

Werner Almesberger
werner.almesberger@lrc.di.epfl.ch

Laboratoire de Réseaux de Communication (LRC)
EPFL, CH-1015 Lausanne, Switzerland

February 5, 1996

Contents

1 System overview 1
2 Device data 4
3 VC data 6
4 Socket buffer extensions 7
5 Device operations 8
6 Protocol operations 10
7 Physical layer device operations 10
8 Support functions 11
9 Summary 12

1 System overview

Figure 1 illustrates the environment a Linux ATM device driver operates in. “Device-independent
ATM coordination” is basically a set of common data structures and conventions. “Protocol” denotes
whatever uses the ATM device driver in a given context. Currently, this is either a raw transport or IP
over ATM. ATM socket layer and protocol are not clearly separated in the current implementation, so
the distinction between them may occasionally be somewhat arbitrary.

An ATM device driver consists of two parts: a usually small driver for the physical layer unit (PHY)
that controls physical layer operation and gathers statistics, and the actual driver which is responsible
for controlling the segmentation and reassembly (SAR) process, resource allocation, and for coordination
with the protocol, the PHY driver, and the hardware. The reason for splitting the SAR and the PHY

*This document describes the device driver interface of Linux ATM release 0.7. Other releases may differ to some
extent.

[e]

Figure 1: General ATM device access structure.

component is mainly that one could expect that several different PHY chips are used with the same SAR
chip, and that the same PHY chip might actually appear on several adapters equipped with different
SAR chips.

Normally, segmentation and reassembly and related functions are performed directly in hardware,!
although a driver for very simplistic ATM adapters may also perform those operations in software.
Similarly, traffic shaping is normally performed in hardware, but a driver may also do some or all of it
in software.

Only the SAR driver needs to have knowledge of how the hardware is accessed. It provides an interface
for accessing the PHY device to the PHY driver.

Some of the device-independent data structures are also manipulated by the socket layer. Note that
some protocols (e.g. IP over ATM) may go through additional layers before data eventually reaches a
socket (if at all).

Figure 2 gives a simplified view of the device-independent data structures. Many of the device-
independent structures contain pointers to device-dependent structures which are under the control
of the device driver.

atm_dev represents an ATM device. It contains pointers to device operations (see section 5), to opera-
tions on the PHY device (see section 7), to the private data structures of the SAR and the PHY drivers,
the list of VC descriptors, and several sets of statistics counters (one set per AAL).

A VC descriptor (atm_vcc) contains all information pertaining to a VC, i.e. the VPI and VCI numbers,
the AAL number, the address family, traffic parameters, etc. In addition to that, there are a few
pointers: back to the device structure, to protocol functions (see section 6), to driver-private data, to
protocol-private data, to the corresponding statistics block in the device structure, to the receive queue,
and to the next and the previous VC descriptor.

The receive queue contains incoming SDUs waiting for final delivery by the ATM socket layer. Queues
for data waiting for transmission are maintained by the device driver.

!Throughout this document “in hardware” means that the respective function is performed by the adapter.

am_dev / atmdev_ops

phy I —— atmphy_ops

dev_data
proto_data
ops |
dev_data—— 1
proto_data 7
stats /
recvq————————
RX queue

Figure 2: Device and VC data structures.

2 Device data

Device-independent ATM interface parameters are stored in struct atm_dev:

struct atm_dev {
const struct atmdev_ops *ops;
const struct atmphy_ops *phy;
const char *type;
int number;
struct atm_vcc *vccs;
struct atm_vcc *last;
void *dev_data;
void *phy_data;
atm_dev_flags_t flags;
struct atm_dev_addr *local;
unsigned char esi[ESI_LEN];
struct atm_cirange ci_range;
struct k_atm_dev_stats stats;
char signal;
int link_rate;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *proc_entry;
char *proc_name;
#endif
struct atm_dev *prev,*next;

};

ops points to the device operation function pointers, see also section 5. ops is set by atm_dev_register
when registering the device.

phy points to PHY device operation function pointers, see also section 7. If there is no physical layer
device or if it is directly controlled by the SAR driver, phy is not used and may be set to NULL.
Otherwise, the PHY driver initialization function has to set phy when invoked by the SAR driver.

type points to the device type name. The device type is used to identify the driver in kernel messages
and typically indicates the brand and the model number of the ATM adapter. number is the ATM
interface number. type and number are set by atm_dev_register.

veces points to the descriptor of the first VC of that device. If there are no VCs, vces has to be set
to NULL. It is initialized to NULL by atm_dev_register. last points to the last VC descriptor or is
undefined if there is none. VCs are placed on the VC list in an arbitrary order.

dev_data and phy_data point to private data structures belonging to the SAR driver and the PHY
driver, respectively. The content of these pointers is never accessed by any other part of the system than
by the respective driver. If a driver does not wish to use private data structures, it can therefore leave
the pointers uninitialized.

local points to the list of local ATM addresses of the interface. The same conventions as for the
corresponding fields in SVC address structures apply (see also [2]). local can be set or changed at any
time (except from interrupts). It is initialized to NULL by atm_dev_register.

esi contains the device’s end system identifier (ESI). esi should be set during device initialization. If
no ESI is available, the array should be filled with zero bytes.

ci_range specifies the range of VPIs and VCIs that are supported by that device. ci_range has to be
initialized during device initialization and may be changed later by the device driver.

stats contains counters for AAL-level events. The counters are zero-initialized by atm_dev_register,
maintained by the driver, and read and possibly reset (zeroed) by device-independent functions. Inter-
rupts are disabled while reading or resetting the counters.

The counters are grouped in sets for each AAL type:

struct atm_dev_stats {
struct atm_aal_stats aal0;
struct atm_aal_stats aal34;
struct atm_aal_stats aalb;
} __ATM_API_ALIGN;
#define ATM_GETLINKRATE _I0OW(’a’,ATMIOC_ITF+1,struct atmif_sioc)

#define ATM_GETNAMES _I0W(’a’ ,ATMIOC_ITF+3,struct atm_iobuf)

#define ATM_GETTYPE _I0W(’a’ ,ATMIOC_ITF+4,struct atmif_sioc)
#define ATM_GETESI _I0W(’a’ ,ATMIOC_ITF+5,struct atmif_sioc)
#define ATM_GETADDR _I0W(’a’ ,ATMIOC_ITF+6,struct atmif_sioc)
#define ATM_RSTADDR _I0W(’a’ ,ATMIOC_ITF+7,struct atmif_sioc)
#define ATM_ADDADDR _I0W(’a’ ,ATMIOC_ITF+8,struct atmif_sioc)
#define ATM_DELADDR _I0W(’a’ ,ATMIOC_ITF+9,struct atmif_sioc)

#define ATM_GETCIRANGE _IOW(’a’,ATMIOC_ITF+10,struct atmif_sioc)
#define ATM_SETCIRANGE _IOW(’a’,ATMIOC_ITF+11,struct atmif_sioc)

#tdefine ATM_SETESI _I0W(’a’ ,ATMIOC_ITF+12,struct atmif_sioc)
#tdefine ATM_SETESIF _I0W(’a’ ,ATMIOC_ITF+13,struct atmif_sioc)
#define ATM_GETSTAT _I0W(’a’,ATMIOC_SARCOM+0,struct atmif_sioc)
#define ATM_GETSTATZ _I0W(’a’,ATMIOC_SARCOM+1,struct atmif_sioc)
#define ATM_GETLOOP _I0W(’a’ ,ATMIOC_SARCOM+2,struct atmif_sioc)
#tdefine ATM_SETLOOP _I0W(’a’ ,ATMIOC_SARCOM+3,struct atmif_sioc)
#define ATM_QUERYLOOP _IOW(’a’,ATMIOC_SARCOM+4,struct atmif_sioc)
#define ATM_SETSC _I0W(’a’ ,ATMIOC_SPECIAL+1,int)

#define ATM_ITFTYP_LEN 8
* Loopback modes for ATM_{PHY,SAR}_{GET,SET}L0O0OP
x/

#define __ATM_LM_NONE 0

#define __ATM_LM_AAL 1

#define __ATM_LM_ATM 2

#define __ATM_LM_PHY 8

#define __ATM_LM_ANALOG 16

#define __ATM_LM_MKLOC (n) ()

#define __ATM_LM_MKRMT (n) ((n) << 8)

#define __ATM_LM_XTLOC(n) ((n) & Oxff)
#define __ATM_LM_XTRMT(n) (((n) >> 8) & Oxff)
#define ATM_LM_NONE 0

#define ATM_LM_LOC_AAL __ATM_LM_MKLOC(__ATM_LM_AAL)
#define ATM_LM_LOC_ATM __ATM_LM_MKLOC(__ATM_LM_ATM)
#define ATM_LM_LOC_PHY __ATM_LM_MKLOC(__ATM_LM_PHY)
#define ATM_LM_LOC_ANALOG __ATM_LM_MKLOC(__ATM_LM_ANALOG)
#define ATM_LM_RMT_AAL __ATM_LM_MKRMT(__ATM_LM_AAL)
#define ATM_LM_RMT_ATM __ATM_LM_MKRMT(__ATM_LM_ATM)
#define ATM_LM_RMT_PHY __ATM_LM_MKRMT(__ATM_LM_PHY)
#define ATM_LM_RMT_ANALOG __ATM_LM_MKRMT (__ATM_LM_ANALOG)

* Note: ATM_LM_LOC_* and ATM_LM_RMT_* can be combined, provided that

* __ATM_LM_XTLOC(x) <= __ATM_LM_XTRMT(x)

*/

struct atm_iobuf {
int length;
void *buffer;

1
Each set has the following counters:

struct atm_aal_stats {

#define __HANDLE_ITEM(i) int i
__AAL_STAT_ITEMS

#undef __HANDLE_ITEM

};

tx and rx count the PDUs that have successfully been sent or received, respectively. tx_err counts
cases where an SDU accepted for transmission was discarded later. rx_err counts PDUs received with
a bad CRC, an invalid length, or a similar defect. rx_drop counts PDUs discarded because of memory

shortage.? The behaviour on overflows is undefined.

3 VC data

Device-independent VC parameters are stored in struct atm_vcc:

struct atm_vcc {
atm_vcc_flags_t flags;
unsigned char family;
short vpi;
int vci;
unsigned long aal_options;
unsigned long atm_options;
struct atm_dev *dev;
struct atm_qos qos;
struct atm_sap sap;
atomic_t tx_inuse,rx_inuse;
void (*push) (struct atm_vcc *vcc,struct sk_buff *skb);
void (*pop) (struct atm_vcc *vcc,struct sk_buff *skb);

struct sk_buff *(*alloc_tx) (struct atm_vcc *vcc,unsigned int

int (*push_oam) (struct atm_vcc *vcc,void *cell);
int (*send) (struct atm_vcc *vcc,struct sk_buff *skb);
void *dev_data;

void *proto_data;

struct timeval timestamp;

struct sk_buff_head recvqg;

struct k_atm_aal_stats *stats;

wait_queue_head_t sleep;

struct sock *sk;

struct atm_vcc *prev,x*next;

short itf;

struct sockaddr_atmsvc local;

struct sockaddr_atmsvc remote;

void (*callback) (struct atm_vcc *vcc);

2Note that rx_err and rx_drop may not only be incremented by the device driver but also by the peek function.

struct sk_buff_head listenq;
int backlog_quota;
int reply;

struct atm_vcc *session;
void *user_back;

};
flags contains flags indicating the VC state. The following flags are relevant for the device driver:

ATM_VF_ADDR indicates that the connection identifier stored in vpi and vci (see below) shall be consid-
ered to be “in use”. This flag should be set by the device driver immediately before allocating
the connection identifier in hardware, and the device driver must clear the flag immediately after
freeing the connection identifier in hardware. Note that other entities may set ATM_VF_ADDR before
invoking the SAR driver’s open function.

ATM_VF READY indicates that the VC is ready to transfer data. This flag must be set by the device driver
when transfers are possible in all requested directions and it should be cleared by the device driver
before closing the VC. Note that other entities may clear ATM_VF_READY before requesting a close.

ATM_VF_PARTIAL indicates that resources are allocated to the (P)VC. This flag is entirely under the
control of the device driver.

family is the address family, i.e. either AF_ATMPVC or AF_ATMSVC. aal contains the AAL number. dev
contains a pointer to the corresponding device structure. txtp and rxtp contain send and receive traffic
parameters. All these fields are initialized before the open function is called.

vpi, and vci contain the connection identifier. They have to be set by the open function.?

tx_quota, rx_quota, tx_inuse, and rx_inuse describe the maximum size of the transmit and receive
queues (in bytes) and their current utilization. Those quotas are maintained and enforced by the
protocol.

aal_options and atm_options are reserved for future use. The protocol operations push, pop, peek,
and push_oam are described in section 6. alloc_tx can be altered by the protocol, the device driver, or
both. It is also described in section 6.

dev_data points to device-specific private data, i.e. to a device-specific VC descriptor. Similarly,
proto_data points to protocol-specific data. Neither of those pointers is ever touched by any other
entity than the one owning it.

stats points to the corresponding set of counters in the device structure. The device driver shall use
stats to access statistics counters (as opposed to accessing them via dev). stats is initialized before
open is called.

timestamp, recvq, sleep, prev, next, and all SVC-related fields should not be touched by the device
driver.

4 Socket buffer extensions

The socket buffer structure struct sk_buff (defined in skbuff.h) is extended for ATM with the fol-
lowing fields:

3The requested VPI and VCI are passed to open as arguments.

size, pos, and vcc are reserved for internal use by the device driver and are not touched by any other
entity.

iovent contains the size of the scatter-gather vector. If no scatter-gather is used, iovent is set to
zero. When using scatter-gather, skb->data points to an array of elements of type struct iovec and
skb->len indicates the total length of all buffers. When receiving, iovent must be initialized by the
device driver. When sending, iovent is appropriately initialized before send is invoked.

timestamp contains the time at which the cell was received. timestamp has to be set by the device
driver before calling the push function.

5 Device operations
Function pointers for ATM device operations are stored in struct atmdev_ops:

struct atmdev_ops {
void (*dev_close) (struct atm_dev *dev);
int (*open) (struct atm_vcc *vcc,short vpi,int vci);
void (*close) (struct atm_vcc *vcc);
int (*ioctl) (struct atm_dev *dev,unsigned int cmd,void *arg);
int (*getsockopt) (struct atm_vcc *vcc,int level,int optname,
void *optval,int optlen);
int (*setsockopt) (struct atm_vcc *vcc,int level,int optname,
void *optval,int optlen);
int (*send) (struct atm_vcc *vcc,struct sk_buff *skb);
int (*sg_send) (struct atm_vcc *vcc,unsigned long start,
unsigned long size);
#if O
int (*send_iovec) (struct atm_vcc *vcc,struct iovec *iov,int size,
void (*discard) (struct atm_vcc *vcc,void *user),void *user);
#endif
int (*send_oam) (struct atm_vcc *vcc,void *cell,int flags);
void (*phy_put) (struct atm_dev *dev,unsigned char value,
unsigned long addr);
unsigned char (*phy_get) (struct atm_dev *dev,unsigned long addr);
void (*feedback) (struct atm_vcc *vcc,struct sk_buff *skb,
unsigned long start,unsigned long dest,int len);
int (*change_qgos) (struct atm_vcc *vcc,struct atm_qos *qos,int flags);
void (*free_rx_skb) (struct atm_vcc *vcc, struct sk_buff *skb);
int (*proc_read) (struct atm_dev *dev,loff_t *pos,char *page);

};

open is invoked to open a VC in hardware. Many fields in the VC descriptor are already initialized,
see section 3. The VPI and the VCI are passed as arguments. Note that they may be wildcarded or
incompletely specified. The device driver has to perform the requested resource allocations and possibly
select an appropriate VC. open returns zero if the operation has succeeded, or a negative error code if
the operation has failed. In case of a failure, open must undo all state changes (e.g. allocations) before
returning.

close is invoked to close a VC and to return all resources allocated for it. close is only invoked once
per VC and only if the open operation was successful.

ioctl passes a device ioctl to the device driver. Note that for device-private ioctls, arg is passed “as
is” from the calling process and may point to memory locations that process is not allowed to access.

Memory access and permissions are already checked for “standard” ioctls. If an ioctl write back data to
the caller, the function also has to return the length in bytes. If the SAR driver does not recognize an
ioctl, it must pass it on to the PHY driver if one is defined and if it provides an ioctl function. The list
of assigned ioctl values for Linux ATM is available at http://lrcwww.epfl.ch/linux-atm/magic.html

getsockopt and setsockopt can be used to access driver-specific variables. When calling getsockopt,
optval and optlen point to unchecked memory. When calling setsockopt, read access for optval has
been checked. Unlike ioctls, unrecognized getsockopts and setsockopts are not forwarded to the
PHY driver. Every ATM driver should support at least SO_CIRANGE.

send is used to enqueue SDUs for transmission. The socket buffer (skb) must remain accessible until the
driver explicitly frees it by invoking the pop function. If no pop function is provided, the driver must call
dev_kfree_skb(skb,FREE_WRITE) instead. Of the ATM-specific skb fields, only iovcnt is initialized
when send is invoked.

sg_send is used by the protocol to determine whether a packet should be sent using scatter-gather.
Drivers that don’t implement scatter-gather should set sg_send to NULL. sg_send examines the start
address and the length of the packet to estimate whether there is a performance advantage in locking
the packet in memory, building a scatter-gather vector, and sending directly from user space (see also
[1]), as opposed to copying the data to a kernel buffer and sending that buffer. sg_send returns zero if
scatter-gather should not be attempted, a non-zero value otherwise.

poll is invoked before the protocol checks for the presence of received data. Drivers which are not
notified (e.g. by interrupts) when new packets arrive need this function to poll their respective data
source. Interrupt-driven drivers should set poll to NULL. The nonblock argument indicates whether
the poll function should wait until something has been received (if zero) or not (if non-zero). poll may
be removed at a later time (a driver could also use timer-driven polling with similar or better results).

send_oam is used to send OAM cells. cell points to the cell in kernel memory. The same format as for
AALQ cells is used (see [2]). flags indicates how the cell should be transmitted. The following flags are
defined:

ATM_OF_IMMED immediate delivery requested (instead of in-sequence)

ATM_OF_INRATE in-rate delivery requested

If a driver is unable to support the requested transmission, it should not fail the operation but it should
use the closest available transmission method (e.g. send immediately even if ATM_OF_IMMED is not set)
instead. send_oam may block for a short moment when performing in-sequence or in-rate emission.
Note that send_oam may be invoked from an interrupt and must therefore not try to sleep. send_oam
is currently not used.

phy_put is invoked by the PHY driver to write one byte to a register of the PHY device. phy_get is
used to read a byte. Both functions may be invoked from interrupts. A SAR driver must provide those
two functions if it uses a PHY driver (and if the PHY device supports the corresponding operation).

feedback may be invoked when the protocol or the socket has determined at which memory address
an incoming SDU will be stored. The start address of the application-level SDU (i.e. after removing
headers and trailers), the destination address, and the size of the application-level SDU are passed to
feedback. This information can be used to adjust parameters of heuristics used by the driver to predict
optimal buffer allocation for receiving. Note that the protocol is not obliged to ever call feedback upon
delivery of a packet.

In addition to the functions in struct atmdev_ops, each SAR driver must also provide a device detection
function which is invoked by atmdev_init (in atmdev_init.c).

6 Protocol operations
Protocol operations invoked by the device driver are defined in struct atm_vcc:

void (*push) (struct atm_vcc *vcc,struct sk_buff *skb);

void (*pop) (struct atm_vcc *vcc,struct sk_buff *skb);

struct sk_buff *(*alloc_tx)(struct atm_vcc *vcc,unsigned int size);
int (*push_oam) (struct atm_vcc *vcc,void *cell);

push is invoked by the ATM driver to deliver received packets to the protocol. Every protocol must
provide a push function. The protocol acquires ownership of the skb and is responsible for freeing it
(with kfree_skb(skb,FREE_READ)). push is invoked by the socket layer with the skb argument set to
NULL when the VC is closed, in order to detach the protocol from the VC. Note that the device driver
close function is called before detaching the protocol, so that the VC can no longer be used to send or
receive data.

pop is invoked after successful emission of a SDU to indicate that the ATM driver will no longer
use the skb. If no pop function is provided (i.e. if pop is set to NULL), the driver calls
dev_kfree_skb(skb,FREE_WRITE) instead.

peek is invoked by a device driver whenever a new buffer has to be allocated for an incoming packet.
The size of the packet and, optionally, a pointer to a function to examine the new packet are passed
to the protocol. The fetch function can be used to read the ith 32 bits word from the packet, e.g. in
order to improve buffer alignment based on protocol or service information contained in a packet header.
Drivers which cannot provide such functionality must pass NULL instead. peek either returns an skb
large enough for the packet or it returns NULL, indicating that the packet should be discarded. peek
has to update the statistics (vcc->stats) in this case to indicate whether the packet was discarded due
to lack of memory (rx_drop) or due to some other problem (rx_err).

alloc_tx is used to allocate kernel memory for sending a datagram. Before protocol initialization and
invocation of the device driver open function, alloc_tx is set to a function that only invokes alloc_skb.
Both, the protocol and the device driver can specify their own functions instead. A replacement function
should always invoke the function previously found in alloc_tx to perform the actual allocation. This
way, additional memory or alignment requirements of drivers and protocols can easily be combined.*

If non-NULL, push_oam is invoked whenever an OAM cell is received. A pointer to the cell content
is passed. The cell is stored in the same format as used for AALO. push_oam can request in-sequence
delivery of the cell by returning a non-zero value. If push_oam returns zero, the cell is discarded after-
wards. If push_oam is set to NULL, all OAM cells are delivered in-sequence. Hardware limitations may
only allow approximative in-sequence delivery.

7 Physical layer device operations
Function pointers for physical layer device driver operations are stored in struct atmphy_ops:

struct atmphy_ops {
int (*start) (struct atm_dev *dev);
int (*ioctl) (struct atm_dev *dev,unsigned int cmd,void *arg);
void (*interrupt) (struct atm_dev *dev);
int (*stop) (struct atm_dev *dev);

};

4The arguments of alloc_tx will be changed in future releases to support scatter-gather.

10

start is invoked by the SAR driver to start the PHY device. This function is called at least once per
interface.

ioctl is invoked by the SAR driver to forward an ioctl that is not understood by it. Each PHY
driver for SONET should at least support the SONET_GETSTATZ, SONET_GETSTAT, SONET_SETFRAMING,
and SONET_GETFRAMING ioctls. In addition to that, the ioctls SONET_SETDIAG, SONET_CLRDIAG, and
SONET_GETDIAG should be supported if the hardware has the capability to simulate errors. PHY drivers
that don’t support ioctl should set the field to NULL.

interrupt is invoked whenever the SAR driver receives an interrupt which is triggered by the PHY
device. This function is only necessary if PHY interrupts are relayed through the SAR device and if the
PHY generates interrupts at all.

In addition to the functions in struct atmphy_ops, each PHY driver must also provide an initialization
function which is invoked by the SAR driver. That function should initialize the PHY device and it has
to populate the dev->phy field.

8 Support functions
Some device-independent support functions are defined in atmdev.h:

struct atm_dev *atm_dev_register(const char *type,const struct atmdev_ops *ops,
int number,atm_dev_flags_t *flags);
struct atm_dev *atm_find_dev(int number);
void atm_dev_deregister(struct atm_dev *dev);
void shutdown_atm_dev(struct atm_dev *dev);
void bind_vcc(struct atm_vcc *vcc,struct atm_dev *dev);
* This is approximately the algorithm used by alloc_skb.
L3

*/
static __inline__ int atm_guess_pdu2truesize(int pdu_size)
{
return ((pdu_size+15) & ~15) + sizeof(struct sk_buff);
}

static __inline__ void atm_force_charge(struct atm_vcc *vcc,int truesize)

atomic_add (truesize+ATM_PDU_OVHD,&vcc->rx_inuse) ;

}
static __inline__ void atm_return(struct atm_vcc *vcc,int truesize)
{
atomic_sub(truesize+ATM_PDU_OVHD,&vcc->rx_inuse) ;
}
static __inline__ int atm_may_send(struct atm_vcc *vcc,unsigned int size)
{
return size+atomic_read(&vcc->tx_inuse)+ATM_PDU_OVHD < vcc->sk->sndbuf;
}

int atm_charge(struct atm_vcc *vcc,int truesize);

struct sk_buff *atm_alloc_charge(struct atm_vcc *vcc,int pdu_size,
int gfp_flags);

int atm_find_ci(struct atm_vcc *vcc,short *vpi,int *vci);

atm_dev_register registers a new ATM device. Pointers to the interface type name and to the device
driver operations structure have to be passed. Note that the type name must be accessible at the

11

specified address until after the device is de-registered. atm_dev_register either returns a pointer to a
new, initialized device structure, or NULL if no device structure was available for allocation.

atm_dev_deregister de-registers an ATM device. All activity on that device must have been stopped
before invoking atm_dev_deregister. atm_dev_deregister is typically used to deallocate device struc-
tures after an initialization failures.

atm_find_ci determines whether the specified connection identifier is available on vcc->dev. If a wild-
card is specified, atm_find_ci tries to locate an unused connection identifier. Note that atm_find_ci
is comparably inefficient and that a device driver may be able to perform noticeably faster lookups on
its internal tables. On success, atm_find_ci sets vcc->vpi and vce->vcei and returns zero. Otherwise,
it returns a negative error code.

9 Summary

Table 1 summarizes ownership of fields contained in ATM-specific data structures. Only fields relevant
to ATM device drivers are shown. Most of the fields are read by various system components, SO cross-

references for read accesses would be of only marginal use.

Structure Field Initialized by Modified by
atm_dev ops atm_ dev_register —
atm_dev phy PHY driver initialization (if applicable) —
atm_dev type atm_dev_register —
atm dev dev_data SAR driver (if using field) SAR driver
atm_dev phy_data PHY driver (if using field) PHY driver
atm dev esi atm dev_register, SAR driver initialization SAR driver
atm_dev ci_range SAR driver initialization SAR driver
atm_dev stats atm_dev_register® SAR driver, protocol
atm_vcc flags ATM socket Many components
atm_vce aal ATM socket, protocol —
atm_vcc dev ATM socket ATM socket®
atm vcc txtp ATM socket SAR driver
atm vcc rxtp ATM socket SAR driver
atm_vcc vpi SAR driver —
atm_vcc vci SAR driver —
atm_vcc aal options ATM socket ATM socket
atm vcc atm options ATM socket ATM socket
atm_vcc proto ops Protocol Protocol”
atm_vcc alloc_tx ATM socket SAR driver, protocol
atm_vcc dev_data SAR driver SAR driver
atm_vcc proto_data Protocol Protocol
atm_vcc stats ATM socket, protocol —
sk_buff atm.size SAR driver (if using field) SAR driver
sk_buff atm.pos SAR driver (if using field) SAR driver
sk_buff atm.vcc SAR driver (if using field) SAR driver
sk_buff atm.iovent TX: ATM socket, protocol —

RX: SAR driver —
sk_buff atm.timestamp | SAR driver —

Table 1: Summary of field ownership

12

Table 2 summarizes the operations that are provided by ATM device drivers (SAR and PHY part) and
by ATM protocol modules. Again, only fields relevant to ATM device drivers are shown. “interrupt”
indicates that a function might be invoked during an interrupt.

Structure Field Optional | Provider Caller

atmdev_ops open Yes ATM driver Protocol

atmdev_ops close Yes ATM driver Protocol

atmdev_ops ioctl Yes ATM driver ATM socket

atmdev_ops getsockopt Yes ATM driver ATM socket

atmdev_ops setsockopt Yes ATM driver ATM socket

atmdev_ops send No ATM driver Protocol

atmdev_ops sg_send Yes ATM driver Protocol

atmdev_ops poll Yes ATM driver Any non-interrupt

atmdev_ops send_oam Yes ATM driver Protocol, interrupt

atmdev_ops phy_put No8 SAR driver PHY driver, interrupt

atmdev_ops phy get No8 SAR driver PHY driver, interrupt

atmdev_ops feedback Yes ATM driver ATM socket

atm_vcc push No Protocol ATM driver, interrupt

atm_vcc pop Yes Protocol ATM driver, interrupt

atm_vcc peek No Protocol ATM driver, interrupt

atm_vcc alloc_tx No ATM drv., proto. ATM socket

atm_vcc push_oam No Protocol ATM driver, interrupt

— fetch Yes ATM driver Protocol, interrupt

— Detect No ATM driver atmdev_init

atmphy_ops start No PHY driver SAR driver

atmphy ops ioctl Yes PHY driver SAR driver (called by socket)

atmphy ops interrupt No? PHY driver SAR driver, interrupt

— Initialization No PHY driver SAR driver

— atm_dev_register No Device-indep. ATM driver

— atm_dev_deregister | No Device-indep. ATM driver

— atm_find ci No Device-indep. ATM driver

Table 2: Summary of protocol and driver operations

References

[1] Almesberger,

Werner.

High-speed ATM networking

low-end computer systems,

ftp://lrcftp.epfl.ch/pub/linux/atm/papers/atm on lowend.ps.gz, August 1995.

[2] Almesberger, Werner. Linuz ATM API, ftp://1rcftp.epfl.ch/pub/linux/atm/api/, February

1996.

5Zeroed by device-independent functions.

8This modification occurs before the ATM device driver gets involved.

"E.g. TP over ATM redirects the push function if the ATMARP demon requests to use a VC for TP traffic.

8A SAR driver may not provide phy_put or get_put functions if all the PHY drivers it uses are known to test for
unavailability of those functions.

90nly if interrupts are generated by the physical layer device and if they are relayed through the SAR driver.

13

