ATM on Linux — The 3rd year

Werner Almesberger

werner.almesberger@lrc.di.epfl.ch

Laboratoire de Réseaux de Communication (LRC)
EPFL, CH-1015 Lausanne, Switzerland

March 2, 1997

Abstract

Since the beginning of 1995, ATM support is being
developed for Linux. By now, Linux supports most
functionality that is required for state of the art
ATM networking. This article briefly introduces
relevant ATM concepts, presents the current sta-
tus of development on Linux, gives a configuration
example, and outlines the future direction ATM on
Linux will take.

1 Introduction

ATM (Asynchronous Transfer Mode, [1], see also
[2] for a comprehensive overview of ATM technol-
ogy) is a network technology for modern high-speed
integrated services networks. It is not only very
popular in WANs and for high-speed backbones in-
terconnecting LANSs, but ATM also offers a rich set
of features to support guaranteed Quality of Service
(QoS; bandwidth, end-to-end delay, etc.), which is
necessary for many multimedia applications.

In order to create an ATM platform for re-
search and education, the Laboratoire de Réseaux
de Communication (LRC) of EPFL is developing
ATM support for Linux.

The Web main page of the ATM on Linux project
with pointers to the latest ATM on Linux distribu-
tion and related news is http://lrcwww.epfl.ch/
linux-atm/

2 ATM basics

ATM is designed for demanding data and multime-
dia communication, such as audio and video trans-
mission, and high-speed data transfer. The de-
sign of ATM has been strongly influenced by the
telecommunication community, and therefore ATM
differs in many ways from data network architec-
tures like today’s Internet. The probably most im-
portant differences are the following:

o ATM is connection-oriented

e ATM supports guaranteed QoS (“Quality of
Service”)

e ATM clearly distinguishes between end sys-
tems and “the network”

All these concepts have their counterparts in the
telephony network: you have to establish a connec-
tion before you can communicate with the other
party, the QoS (i.e. that you get reasonable bi-
directional voice transmission) is guaranteed and
doesn’t depend on the network load, and your tele-
phone is very different from, say, a PBX.

Another difference is that ATM sends data in
tiny cells with a fixed size of only 53 bytes instead
of in variable-size frames. While this difference is
important at the lowest protocol layers, higher lay-
ers typically use larger units which are then trans-
formed from/to cells by a so-called “ATM adaption
layer” (AAL, [3]).

Figure 1 shows the structure of an ATM net-
work. The network itself consists of interconnected

switches. Two types of networks are distinguished:
“private” networks are typically company or cam-
pus networks, and “public” networks correspond
to what is offered by telephone carriers. The stan-
dardized interface between end systems (“hosts”)
and the ATM network is called the “user-network
interface” (UNI). The UNI defines several types of
physical media (i.e. multi-mode fiber, UTP-5, etc.),
many bit rates (ranging from only a few Mbps to
155 Mbps and more), line codings, configuration
and signaling protocols, etc.

Public network

Figure 1: General structure of an ATM network

The most commonly used version of the UNI is
3.1 [4], but many providers of ATM stacks have al-
ready implemented the next version, 4.0 [5, 6], or
are working on it. UNI 4.0 adds many new features
to UNI 3.1, the most interesting ones are probably
a scalable point-to-multipoint (“multicast”) mech-
anism and support for ABR (“Available Bit Rate”),
a traffic class with congestion control inside the net-
work.

There are two mechanisms for setting up ATM
connections: the simple way is to configure each
switch individually (a bit like it was done in the
early days of telephony, where operators had to
physically connect calls on switchboards). Such
connections are called “permanent virtual circuits”
(PVGCs). A more convenient way of setting up con-
nections it to “dial” them, which is called “signal-
ing” in ATM terminology. “Switched virtual cir-
cuits” (SVCs) are set up using signaling. ATM sig-
naling is based on the protocols DSS2 (see Q.2931
[7] for unicast and Q.2971 [8] for multicast), which
in turn use the so-called SAAL [9, 10, 11] to trans-
port signaling messages.

Figure 2 illustrates ATM signaling: first, the
caller sends a SETUP message towards the destina-
tion (1). This message is processed at every single
switch. If the destination accepts the call, it returns
a CONNECT message (2). Again, this message is
seen by all switches. When the CONNECT mes-
sage reaches the destination, the data connection
is established and data can be exchanged between
both end systems (3).! Note that the switches
don’t have to interpret what is sent on the data
connection.

Calling end system

Called end system

SETUP\\\
—

/
SETUP
= Data

e
CONN ECT/

Switch 3 2

Figure 2: Signaling message flows

Two mechanisms that are closely related to sig-
naling are address configuration and a directory
service. Addresses are configured either manually
or automatically, using the “interim local man-
agement interface” (ILMI, [4]), which is based on
SNMP [12].

An ATM NSAP address (see section 5.1.3.1 of
[4]) has a length of 20 bytes. Human beings there-
fore usually prefer to use names instead of numeric
addresses. This can be accomplished either by us-
ing a hosts file or by using a distributed directory
service. ATM Forum has specified such a directory
service called ANS (“ATM Name Service”, [13]),
which is based on BIND (“named”).

At the time of writing, ATM on Linux supports
PVCs and SVCs with UNI 3.1 signaling. Support
for UNI 4.0 signaling is being worked on. The ILMI
demon was contributed by Scott Shumate. ANS
support was contributed by Marko Kiiskila.

3 ATM and the real world

ATM purists may dream of a world where all com-
puters, TV sets, telephones, etc., are connected to

1. This is slightly simplified. ATM signaling also allows
acknowledgements for the SETUP message and it requires
an acknowledgement for CONNECT.

a big ATM cloud consisting of many interconnected
ATM networks, but the real world is different: con-
nectionless IP networks without QoS concepts play
the dominant role, and “native” ATM applications
are a minority.

The first step in running IP over ATM is to have a
means to carry IP packets on ATM. This is mainly
an encapsulation issue, defined in RFC1483 [14].
With this alone, IP can be run over ATM using
PVCs.

For SVCs, also a way to resolve IP addresses to
ATM addresses is needed. The IETF currently uses
an approach called “classical IP over ATM” that is
based on an extension of ARP, called ATMARP
[15, 16]. ATMARP works like this (see also fig-
ure 3): each IP subnet has one ARP server (C).
When a client (A, B) starts, it registers its own IP
and ATM addresses at the ARP server (1). Now,
if client A wants to send data to client B, but it
only knows B’s IP address, it sends an ATMARP
request (2) to the server. If the server knows B’s
addresses, it responds with an ATMARP reply (3),
containing B’s ATM address. A can now establish
an SVC to B and send data (4).

ATMARP server

Figure 3: ATMARP message flows

ATM Forum has defined a similar service, called
“LAN Emulation” (LANE) [17, 18]. LANE tries
to provide exactly the functionality one would ob-
tain from, say, an Ethernet. Therefore, is can also
carry other protocols than just IP and it supports
multicast (and even broadcast). One disadvantage
of LANE with respect to classical IP over ATM is
that the maximum IP packet size is limited to 1500
bytes, like on Ethernet, whereas the default max-
imum IP packet size for classical IP over ATM is
9180 bytes ([19]).

Work from IETF and ATM Forum is being

merged in MPOA (“MultiProtocol Over ATM”,
[20]), which aims to overcome many of the lim-
itations of classical IP and LANE. In particular,
MPOA allows the use of “shortcut” connections
which bypass intermediate routers.

Furthermore, there is work being done on inte-
grating IP mechanisms for negotiating QoS param-
eters (e.g. RSVP [21]) with ATM [22].

ATM on Linux supports IP over ATM for PVCs
and SVCs as defined by RFC1577 [15] and oth-
ers. Comprehensive support for LANE, including
complete LANE server functionality, has been con-
tributed by Marko Kiiskild. At the time of writing,
work has started to also support MPOA.

Because standard IP currently supports neither
direct ATM end-to-end connectivity beyond sub-
net boundaries nor negotiation of QoS aspects,
LRC has designed an extension of ATMARP called
Arequipa (“Application Requested IP over ATM”,
[23]). Arequipa allows applications to request a di-
rect ATM connection for their exclusive use with
TCP/IP protocols. The applications can also de-
termine exactly what QoS will be available to them.

4 The implementation

An overview of implementation history and imple-
mentation principles can be found in [24]. The de-
sign principle of putting as much functionality as
possible into user mode processes instead of bloat-
ing the kernel has been very successful and contin-
ues to be applied.

Further implementation details can be found in
the following documents: [25] describes the socket
interface for native ATM applications, [26] defines
the interface between the ATM stack and device
drivers, [27] specifies the protocol used between
the kernel and the signaling demon, [28] describes
LANE and its implementation on Linux, and [29]
details the design and implementation of Arequipa.

5 Configuration example

This section illustrates how two Linux PCs are con-
figured for classical IP over ATM. For further de-
tails, please see [30].

The first step is to download the ATM on Linux

distribution,? to patch, rebuild, and boot the ker-
nel, and to compile and install the ATM tools. All
this is described in [30]. In this example, we have
two PCs called alice and bob. They are equipped
with ATM adapters and we assume that they are
connected by an ATM switch.? Figure 4 illustrates
the example configuration.

ATM switch
|

X

Bob

Alice

47005...0020480604BD00
47005...0020EA 00114600

Figure 4: Example ATM network

In order to use signaling, the signaling demon
must be started on both machines. Also, their
ATM addresses need to be configured. This is nor-
mally handled by the ILMI demon. So the next
commands on both machines are (the -b option
starts the demons in the background):

atmsigd -b
ilmid -b

After that, the ATM addresses can be queried
with the atmaddr command (the -n option yields
numeric output):

alice)% atmaddr -n
47000580FFE1000000F21A26D80020480604BD00

bob) atmaddr -n
47000580FFE1000000F21A26D80020EA00114600

Now, classical IP over ATM can be set up. Both
machines connect to the same Logical IP Sub-
net (LIS) with the address 193.8.232.0 (netmask
255.255.255.0), see figure 5.

First, the ATMARP demon needs to be started
on each machine. After that, the IP over ATM
interface can be created with atmarp -c, brought
up (ifconfig), and the route to the LIS can be
added to the routing table:

alice# atmarpd -b

Logical IP
Subnet (LIS)

(193.8.232.0)

Alice
Bob

\
ATMARP server

(193.8.232.1)

/
ATMARP client
(193.8.232.2)

Figure 5: Example LIS (Logical IP Subnet) config-
uration

alice# ifconfig ‘atmarp -c‘ 193.8.232.1 up
alice# route add -net 193.8.232.0

bob# atmarpd -b
bob# ifconfig ‘atmarp -c‘ 193.8.232.2 up
bob# route add -net 193.8.232.0

So far the configuration of both machines has
been almost identical. The final step is to define
who acts as the ATMARP server (see section 3) and
who acts as an ATMARP client. In our example,
alice is the ATMARP server. Because atmarpd
assumes by default to be an ATMARP server, no
further configuration is needed on alice.

However, bob needs to be told where is has to
look for its ATMARP server. This is configured
with the atmarp command:

bob# atmarp -s 193.8.232.0 \
47000580FFE1000000F21A26D80020480604BD00 \
arpsrv

That’s all ! Now, both machines can talk to each
other using TCP/IP, e.g.

bob)% ping 193.8.232.1

PING 193.8.232.1 (193.8.232.1): 56 data bytes
64 bytes from 193.8.232.1: seq=0 time=3.1 ms
64 bytes from 193.8.232.1: seq=1 time=0.9 ms
64 bytes from 193.8.232.1: seq=2 time=0.9 ms

6 The future

The core functionality of ATM on Linux has stabi-
lized in ’96. Drivers for several new ATM adapters

2. See http://lrcwww.epfl.ch/linux-atm/

3. Configurations without an ATM switch are possible,
but they are typically only used for certain experimental
setups.

have been contributed and people are continuing to
work on drivers for additional adapters.

At the time of writing, two major changes are
happening: signaling is extended to support several
features of UNT 4.0, and the kernel code is upgraded
for use in 2.1 kernels.

ATM on Linux is expected to be ready for inte-
gration into the next stable release of the “main-
stream” Linux kernel in the middle of 1997.

7 Conclusion

A brief introduction to the most important con-
cepts of ATM in today’s networking world was
given and it was illustrated that ATM on Linux
supports all the respective mechanisms.

A configuration example for setting up a classical
IP over ATM subnet was given.

At the end of this paper, plans for future devel-
opment were described.

References

[1] Le Boudec, Jean-Yves. The Asynchronous
Transfer Mode: a tutorial, Computer Net-
works and ISDN Systems, Volume 24, Number
4, 1992.

[2] Alles,
ATM,
cell-relay/docs/cisco.html,
tems, May 1995.

Anthony. Internetworking with
http://cell-relay.indiana.edu/
Cisco Sys-

[3] ITU-T Recommendation 1.363. B-ISDN ATM
adaptation layer (AAL) specification, 1TU,
March 1993.

[4] The ATM Forum. ATM User-Network Inter-
face (UNI) Specification, Version 3.1, ftp://

ftp.atmforum. com/pub/UNI/ver3.1, Pren-
tice Hall, 1994.

[5] The ATM Forum, Technical Com-
mittee. ATM User-Network Interface
(UNI) Signalling Specification, Ver-
sion 4.0, ftp://ftp.atmforum.com/pub/

approved-specs/af-sig-0061.000.ps, The
ATM Forum, July 1996.

[6] The ATM Forum, Technical Committee. ATM
Forum Traffic Management Specification,
Version 4.0, ftp://ftp.atmforum. com/pub/
approved-specs/af-tm-0056.000.ps, April
1996.

[7] ITU-T Recommendation Q.2931. Broadband
Integrated Services Digital Network (B-ISDN)
— Digital subscriber signalling system no. 2
(DSS 2) - User-network interface (UNI) —
Layer 3 specification for basic call/connection
control, ITU, February 1995.

[8] ITU-T Recommendation Q.2971. B-ISDN -
DSS 2 — User-network interface layer 38 speci-
fication for point-to-multipoint call/connection
control, ITU, October 1995.

[9] ITU-T Recommendation Q.2100. B-ISDN
signalling ATM adaptation layer (SAAL)
overview description, ITU, July 1994.

[10] ITU-T Recommendation Q.2110. B-ISDN
ATM adaptation layer — service specific con-
nection oriented protocol (SSCOP), ITU, July

1994.

[11] ITU-T Recommendation Q.2130. B-ISDN sig-
nalling ATM adaptation layer — service specific
coordination function for support of signalling
at the user network interface (SSFC at UNI),

ITU, July 1994.

[12] RFC1157: Schoffstall, Martin Lee; Fedor,
Mark; Davin, James R.; Case, Jeffrey
D. A Simple Network Management Protocol

(SNMP), IETF, May 1990.

[13] The ATM Forum, SAA/Directory Work
group. ATM Name Service (ANS) Specifica-
tion Version 1.0, ftp://ftp.atmforum.com/
pub/approved-specs/af-saa-0069.000.ps,

The ATM Forum, November 1996.

[14] RFC1483; Heinanen, Juha. Multiprotocol En-

capsulation over ATM Adaptation Layer 5,
IETF, 1993.

[15] RFC1577; Laubach, Mark. Classical IP and
ARP over ATM, TETF, 1994.

[16] RFC1755; Perez, Maryann; Liaw, Fong-Ching;;
Mankin, Allison; Hoffman, Eric; Grossman,

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Dan; Malis, Andrew. ATM Signaling Support
for IP over ATM, IETF, 1995.

Truong, H. L.; Ellington, W. W. Jr.; Le
Boudec, J.-Y.; Meier, A. X.; Pace, J. W. LAN
Emulation on an ATM Network, IEEE Com-
munications Magazine, May 1995, pp. 70-85.

The ATM Forum, Technical Commit-
tee. LAN Emulation Over ATM, Ver-
sion 1.0, ftp://ftp.atmforum.com/pub/

approved-specs/af-lane-0021.000.ps,
The ATM Forum, January 1995.

RFC1626; Atkinson, Randall J. Default IP
MTU for use over ATM AALS5, TETF, 1994.

The ATM Forum, Multiprotocol Sub-Working
Group. MPOA Baseline Version 1, ftp://
ftp.atmforum. com/pub/mpoa/baseline.ps,
September 1996.

Braden, Bob; Zhang, Lixia; Berson, Steve;
Herzog, Shai; Jamin, Sugih. Resource ReSer-
Vation Protocol (RSVP) — Version 1 Func-
tional Specification (work in progress), In-
ternet Draft draft-ietf-rsvp-spec-14.ps,
November 1996.

RFC1821; Borden, Marty; Crawley, Eric S.;
Davie, Bruce S.; Batsell, Stephen G.. Integra-
tion of Real-time Services in an IP-ATM Net-
work Architecture, IETF, August 1995.

Almesberger, Werner; Le Boudec, Jean-Yves;
Oechslin, Philippe. Application Requested IP
over ATM (AREQUIPA) and its Use in the
Web, Global Information Infrastructure (GII)
Evolution, pp. 252-260, IOS Press, 1996.

Almesberger, Werner. ATM on Linuz,
ftp://lrcftp.epfl.ch/pub/linux/atm/
papers/atm_on_linux.ps.gz, EPFL, March
1996.

Almesberger, Werner. Linuz ATM API, ftp:
//1rcftp.epfl.ch/pub/linux/atm/api/,
EPFL, July 1996.

Almesberger, Werner. Linuz ATM device
driver interface, ftp://lrcftp.epfl.ch/
pub/linux/atm/docs/, January 1996.

[27]

[28]

[29]

[30]

Almesberger, Werner. Linuz ATM internal
signaling protocol, ftp://lrcftp.epfl.ch/
pub/linux/atm/docs/, September 1996.

Kiiskila, Marko. Implementation of LAN Em-
ulation Over ATM in Linux, ftp://viulu.
atm.tut.fi/pub/misc/linux-lane.ps.gz,
Tampere University of Technology, October
1996.

Almesberger, Werner. Arequipa: Design
and Implementation, ftp://lrcuww.epfl.
ch/pub/arequipa/aq_di-1.tar.gz, Techni-
cal Report 96/213, DI-EPFL, November 1996.

Almesberger, Werner. ATM on Linux User’s
guide, ftp://lrcftp.epfl.ch/pub/linux/
atm/dist/, EPFL, July 1996.

