
Ative Blok I/O Sheduling System (ABISS)

Benno van den Brink

benno.van.den.brink�philips.om

Werner Almesberger

werner�almesberger.net

August 12, 2004

Abstrat

The Ative Blok I/O Sheduling System

(ABISS) is an extension of the hard-disk stor-

age subsystem of Linux, whose main purpose is

to provide a guaranteed reading and writing bit

rate to appliations.

1 Introdution

The availability of inexpensive mainstream IDE

Hard Disk Drives (HDD) has allowed the use

of these disk drives in home and mobile audio-

visual (A/V) appliations. This fast-inreasing

storage apaity has reated a new lass of de-

vies like HDD video reorders, personal audio

players et. Beause the number of streams that

has to be read or written to disk is usually lim-

ited to one or two, streaming from and to a hard

disk is urrently not an issue in these devies.

Currently a lear trend is visible in whih

CE devies will beome interonneted through

home networks in the near future. Devies like

these will need to be able to serve multiple data

streams, while providing a 'soft real-time' ser-

vie. This sharing should be eÆient beause

- even more than e.g. in the traditional PC

environment - CE devies often have to meet

other onstraints like low power onsumption,

noise-free operation, minimum hardware ost,

et. Resoure sharing an be aomplished by

either making the appliations aware of eah

other, or by making the system aware of the

appliations.

In this paper we will present the results of

work done on the hard-disk storage subsystem

of Linux, resulting in the Ative Blok I/O

Sheduling System (ABISS). The main purpose

of ABISS is to make the system appliation-

aware by either providing a guaranteed reading

and writing bit rate to any appliation that asks

for it or denying aess when the system is fully

ommitted. Apart from these guaranteed real-

time (RT) streams, our solution also provides

priorities for best-e�ort (BE) disk traÆ.

The system onsists of a framework that is

inluded in the kernel, with a poliy and oor-

dination unit implemented in user spae. This

approah ensures separation between the kernel

infrastruture (the framework) and the poliies

(e.g. admission ontrol) in user spae.

The kernel part onsists of our own elevator

and a new 'read sheduler', ommuniating with

a user-spae daemon. The elevator implements

the multiple priorities of the streams and the

read sheduler is responsible for timely preload-

ing and bu�ering of data. Apart from the ele-

vator and read sheduler, some minor modi�a-

tions were made to �le system drivers.

ABISS works from similar premises as RTFS

[1℄, but puts less emphasis on tight ontrol of

low-level operations, and more on onvergene

with urrent Linux kernel development.

In setion 2 we will give an overview of the

system, in setion 3 the implementation is de-

sribed in more detail. Some measurements will

be presented in setion 4.

The ABISS projet is hosted at http://

abiss.soureforge.net/

2 Overall arhiteture

In this setion, we desribe the role of the in-

dividual omponents that make up the ABISS

system, and how they interat.

Figure 1 shows the data path when read-

ing from disk: the appliation issues requests

to VFS, whih translates them to requests for

the disk bloks that omprise the orrespond-

ing data pages.

1

The blok IO subsystem then

queues these requests, and feeds them to the de-

vie driver, whih retrieves the data from disk.

1. When using the term \request" in this paper, we

usually refer to suh a blok IO request. The kernel

data struture desribing suh a request is aptly named

strut request.

Subsystem
Data structure
Read request
Read data
Control data flow

Block IO

Device driver

Page/buffer cache

VFS

Disk

Request queue

ABISS

Prefetch

ApplicationABISS daemon

File IOService setup
User space

Kernel
Control

Figure 1: The ABISS real-time servie enhanes reg-

ular �le IO by prefething data suh that the appli-

ation never has to wait for disk aesses.

When an appliation requests a real-time

servie (see below) from ABISS, the so-alled

sheduler omponent of ABISS prefethes data

into the page ahe suh that it will already be

in memory when the appliation reads it.

ABISS onsists of a generi framework and

modules that implement spei� servies. The

kernel part is assisted by a user-spae daemon,

whih oversees system-wide resoure use, and

makes poliy deisions. In this paper, we only

disuss the real-time servie available in the de-

fault on�guration. In the future, other servies

may be added.

2.1 Appliation and servie model

With ABISS, an appliation an speify for eah

open �le

2

in qualitative and quantitative terms

how it expets aesses to be handled. This

desription de�nes how the appliation will be-

have, and what servie it expets from the oper-

ating system. ABISS then deides whether sys-

tem resoures allow it to provide this servie,

and whether the appliation is entitled to it. If

yes, ABISS makes the neessary arrangements,

and indiates to the appliation that the servie

is available.

The appliation then aesses the �le in a-

ordane with the pro�le it has spei�ed in its

request, and reeives the agreed upon servie in

return. While doing so, the appliation may give

ABISS indiations of this use, e.g. by informing

it about the urrent position in the �le.

When the appliation loses the �le, the ser-

vie is automatially terminated. The usual

rules for sharing of open �les apply, e.g. if an ap-

pliation forks, the same servie is used jointly

by both proesses then sharing the �le.

2.2 Servie de�nition

In the rest of this paper, we will fous on the

guaranteed real-time servie. This servie only

applies to reading.

From the appliation's point of view, the real-

time servie is haraterized by a rate (r) and a

bu�er size (b). The appliation sets the playout

point to mark the loation after whih it per-

forms aesses. As long as the playout point

moves at rate r or less, aesses to up to b bytes

after the playout point will be served from mem-

ory. If the appliation moves the playout point

faster, the range shrinks aording to the exess

rate, and grows again towards b if the applia-

tion slows down.

For a formal de�nition, if we onsider reading

a �le as a sequene of n single-byte aesses, with

the i-th aess at loation a

i

, at time t

i

, and with

the playout point set to p

i

, the operating system

then guarantees that all aesses are served from

memory, as long as the following onditions are

met for all i; j in 1; : : : ; n with t

i

< t

j

:

p

i

� p

j

< p

i

+ b+ r(t

j

� t

i

)

p

j

� a

j

< b+min(p

j

; p

i

+ r(t

j

� t

i

))

The infrastruture an also be used to im-

plement a prioritized best-e�ort servie without

guarantees. Suh a servie would ensure that, on

average and when measured over a suÆiently

long interval, a reader that has always at least

one request pending, will experiene better la-

teny and throughput, than any reader using a

lower priority.

2.3 API

ABISS does not require any hanges in the way

appliations read and write �les. Also memory-

mapped �le aess is fully supported.

However, in some ases, the ABISS sheduler

(see below) needs further help from the appli-

2. We use the term \open �le" to refer to what POSIX

[2℄ alls an \open �le desription", i.e. the objet a �le

desriptor points to. For one �le (represented in the

kernel by strut inode), there an be many open �les

(represented by strut file).

ation. For example, when reading a �le, par-

tiularly if memory-mapped, the kernel annot

reliably determine the exat loation of the ap-

pliation's playout point.

3

Therefore, the appli-

ation needs to expliitly send this information.

Appliations use iotls for all ABISS-related

ommuniation. For onveniene, there is also a

library of wrapper funtions, providing a higher-

level interfae.

2.4 User-spae daemon

When an appliation requests a servie from

ABISS, the request is examined and re�ned in

several steps. This is shown in �gure 2. First,

the request is heked for formal validity. For ex-

ample, it may speify a servie that is di�erent

from what has been on�gured on the �le sys-

tem in question, or the set of parameters may

be inomplete. Most of these problems are de-

teted by the general framework of ABISS in the

kernel, even before alling the sheduler.

ABISS daemon

ABISS framework

System−wide resource management and policy

Application

Service request

Scheduler

General consistency checks
and scheduler selection

Admission control. May modify requests.

returns response to application
Sets up internal data structures,

Figure 2: When proessing a servie request, the ker-

nel delegates the admission ontrol deision to the

ABISS user-spae daemon.

Then, the request is sent to the ABISS dae-

mon. This daemon keeps trak of system-wide

resoure utilization, and deides whether the

system is apable of providing the requested ad-

ditional servie. This deision an also inlude

poliy, suh as quotas assigned to individual

users, and other aess ontrol onsiderations.

4

The ABISS daemon an also modify the re-

quest and add new parameters. The request is

then passed bak to the kernel, and { if it was

aepted { used by the sheduler to atually im-

plement the orresponding servie.

Communiation between the ABISS daemon

and the kernel is message-based, and uses a mis-

ellaneous devie.

2.5 Sheduler

The sheduler implements the time-related as-

pets of a servie, and de�nes its properties. It

is assisted by the user-spae daemon desribed

above.

Shedulers are modules in the ABISS sys-

tem, and an be on�gured individually for eah

mounted �le system. Eah sheduler module

may also implement several di�erent servies or

operating modes. In the rest of this paper, we

will fous on the \test" sheduler, whih imple-

ments the real-time and prioritized best-e�ort

servies desribed in setion 2.2.

When using the real-time servie, the shed-

uler prefethes pages of the �le the appliation is

reading. This is similar to the read-ahead fun-

tionality the kernel normally provides, but uses

the bu�ering requirements the appliation spe-

i�ed to prefeth pages suh that the appliation

will never try to read a page that has not been

prefethed yet. Furthermore, the sheduler as-

signs a high priority to its read requests, so that

the time until a page is read from disk beomes

preditable. Priorities are implemented by the

elevator, whih is desribed below.

The sheduler limits the rate at whih the ap-

pliation an read data at real-time priority to

the rate the appliation spei�ed when request-

ing the real-time servie.

2.6 Playout bu�er

When an appliation reads data from a �le, this

data is normally bu�ered in kernel spae, and

then transferred to user spae as needed. The

kernel also tries to read data ahead of time, so

that the appliation does not have to wait for the

atual disk aess. Data is normally prefethed

in multiples of one memory page (a page has

typially a size of 4 kB).

For real-time reads, ABISS builds upon this

onept, and prefethes data aording to the

rate at whih the appliation will read it. This

is illustrated in �gure 3. Pages are still kept in

the page ahe, but in addition to this, they are

3. The playout point is the �le loation from whih the

appliation is urrently reading. We disuss the playout

point in more detail in setion 3.2.

4. At the time of writing, poliy is not yet imple-

mented.

Kernel preloads pages from disk

Playout buffer
moves over
the file

Playout buffer

Application

Application reads or maps pages
in the playout buffer

Figure 3: The kernel prefethes pages into the play-

out bu�er, suh that they are in memory when the

appliations retrieves them.

loked in memory while they are in the playout

bu�er.

5

Besides the data rate, ABISS also takes into

aount bu�ering requirements of appliation

and kernel. The data rate is spei�ed by the ap-

pliation when requesting the real-time servie.

The appliation also spei�es its own bu�ering

requirements, for whih it has to take into a-

ount the following fators:

� The amount of data the appliation will re-

trieve or aess at one.

� The amount of time the appliation may be

ahead or behind of the spei�ed rate. This

may be due to the way that the appliation

is designed, but it may also be due to delays

inited by the operating system.

� Any deviation from a sequential aess pat-

tern.

There are also various operating system and

hardware properties that need to be taken into

aount when dimensioning the playout bu�er.

Their handling is transparent to the appliation,

and explained in setion 3.2.

2.7 Elevator

The elevator

6

orders disk IO requests in a way

that minimizes movements of the disk drive

head, and that also tries to ensure that no appli-

ation monopolizes disk aesses. Linux allows

on�guration of the elevator at boot time, and,

as an extension [3℄, also at run time.

ABISS has its own elevator that implements

eight distint priorities, as shown in �gure 4.

Requests at a lower priority are only served if

there are no requests at a higher priority. Prior-

ities are assigned by the ABISS sheduler, and

BE(7) To device driver

BE(1)
Dequeue from
highest priority
to lowest

(as indicated by the ABISS scheduler)
Enqueue according to request priority

RT

Figure 4: The ABISS elevator implements eight pri-

orities: one for real-time requests (RT), and seven

for best-e�ort (BE).

an be per page (for real-time) or per �le. The

elevator is disussed in more detail in setion

3.6.

2.8 Sopes

Figure 5 illustrates for whih areas of the system

the individual parts of ABISS are responsible.

A
B

IS
S

 d
ae

m
on

, s
ys

te
m

−
w

id
e

E
le

va
to

r,
 o

ne
 p

er
 d

is
k

system
 (requires A

B
IS

S
 elevator)

A
B

IS
S

 scheduler, one per file

abiss abiss anticipatory

ABISS daemon

test test foo test

Each scheduler handles the open files for
which ABISS services were requested

Figure 5: Example of how the elements of ABISS are

onneted to distint parts of a system.

The daemon oversees resoure use in the

whole system. Elevators are on�gured per disk

devie. If using ABISS on any part of a disk, the

entire disk must therefore be handled by an in-

stane of the ABISS elevator. ABISS shedulers

an be hosen individually for eah mounted �le

system. Finally, eah sheduler takes are of all

open �les on that �le system, whih are servied

5. Files read using diret IO are not bu�ered in the ker-

nel, and an therefore not be ombined with the ABISS

real-time servie.

6. On Linux, the elevator is frequently alled the \IO

sheduler". In this paper, we always use \elevator", to

avoid onfusing it with ABISS' sheduler, or the CPU

sheduler.

ABISS daemon

Configuration interface

driver
system

File
VM,
etc.Scheduler API

Scheduler library

Scheduler cores

Block device layer

Page cache / Page IO

Block device driver

New/Replaced Changed MainstreamExperimental

POSIX API (VFS)

Application

File IORequests and replies

Page IO

Map

ioctl

Configuration & commands

Access pattern

allocate
Map &

Prefetch

Allocator

Sector IO

Block IO

Queue
Elevator

Figure 6: Overview of how ABISS interfaes with the existing Linux IO subsystem.

Elevator

Application

Block IO

File system
driver and

VFS

Scheduler may
upgrade requests

Application moves playout point

Application reads data

Scheduler caches data location

Location map

Playout buffer
Scheduler prefetches data

get_block

S
ch

ed
ul

er

Figure 7: The main omponents of the \test" shed-

uler are the loation map, the playout bu�er, and

the prefeth logi.

by ABISS. Files on other �le systems, and �les

for whih no ABISS servie has been requested,

are not seen by the shedulers, and are handled

with a default best-e�ort priority.

3 Implementation

Figure 6 shows the main omponents of the

Linux IO subsystem and of ABISS. When an ap-

pliation reads or writes �les, it uses the POSIX

API and VFS to onvey the operations to the

�le system driver. Then, the �le system driver

(through generi support funtions not shown

here) generates aesses to the page ahe.

Data is transferred between the page ahe

and the disk through the blok devie layer:

�rst, a blok IO request (strut bio) is as-

sembled, whih is then sent to the blok de-

vie layer, where it is turned into transfer re-

quests for a number of disk setors. These re-

quests (strut request) are put into the re-

quest queue of the disk elevator. The disk devie

driver then piks suh requests from the queue

one after the other, and proesses them.

The proessing path for memory-mapped �les

is similar. The main di�erene is that the ativ-

ity is triggered through the VM subsystem and

goes only then to the �le system driver.

In order to use ABISS with a �le system, the

�le system driver needs to be hanged. The

hanges mainly onsist of adding a all to the

ABISS iotl funtion and looping the driver's

File block Disk block Length

in the location map.
scheduler records the file’s on−disk location
When requesting an ABISS RT service, the

?

ABISS redirects the file
system’s get_block function

Location map (per file)

If file is mapped, use
location map

If file is not mapped, use original get_block

F
ile system

 driver’s get_block

Figure 8: The sheduler queries the �le system

driver for the on-disk loation of �le data, and then

uses this loation map to read the �le without �le

system meta-data aesses.

get_blok and release funtions through

ABISS.

ABISS also provides its own elevator, whih

implements priorities. This elevator has to be

used by all devies on whih �le systems provid-

ing ABISS servies are mounted.

Some small hanges must be made to the ap-

pliation, to request an ABISS servie, and to

ommuniate with the sheduler.

The other parts of ABISS are ompletely new:

the sheduler orhestrates IO operations suh

that the servie goals are met. It is assisted in

this by the ABISS daemon in user-spae, whih

oversees global resoure use and makes poliy

deisions.

The alloator is an experimental omponent

for ontrolling write operations. This ompo-

nent is desribed in more detail in setion 5.

3.1 Sheduler

As shown in �gure 7, the \test" sheduler on-

tains two major funtional bloks:

� The \loation map" ahes the on-disk lo-

ation of �le data, and helps to avoid diÆ-

ult to handle aesses to �le system meta-

data during real-time reading. There is one

loation map per strut inode.

� The playout bu�er ahes �le data, as de-

sribed in setion 2.6. The sheduler does

the prefething and also ontrols the rate at

whih real-time operations our. There is

one playout bu�er per strut file.

?

Playout buffer

Enough credit ?

Playout point

Yes
No

playout point
Application moves

Drop first page, shift window

Page arrives (in page cache)

Page cache

Move immediately

upgrade existing request
Request new page orDelayed movement

Figure 9: Playout bu�er movement is initiated by

the appliation moving its playout point, and may

happen either immediately, or when suÆient redit

beomes available.

When preparing a �le for real-time servie,

the sheduler �rst looks up the loations of all

disk bloks oupied by �le data, and stores

these loations for later use, in a data struture

alled the \loation map". That way, the �le

an later be read without aessing meta-data,

whih makes it easier to predit the ativity re-

sulting from this read operation. The use of the

loation map is shown in �gure 8.

The �le system driver's get_blok funtion

is hanged suh that it alls a funtion in the

sheduler instead. This funtion heks if a lo-

ation map is available for the �le, and if so,

looks up the blok in question. If no loation

map is available, the original get_blok fun-

tion of the �le system driver is alled.

The loation map is also updated when writ-

ing to the �le. It is implemented as a red-blak

tree.

3.2 The playout bu�er

The playout bu�er is the heart of the sheduler,

and also its most omplex part. This setion

desribes the proess of moving it, and how it is

dimensioned.

When a �le is set up for ABISS servie, the

playout bu�er is �lled (at a best-e�ort priority,

but as quikly as possible) before the real-time

servie begins.

Application playout point

Moves freely

Kernel playout point

Page is no longer used

Page is accessible and up to date

Page is being loaded

Pending read request

Advances at the requested rate (or less)

Figure 10: Playout bu�er movement is ontrolled by

the position of two playout points, one from the ap-

pliation, and the other from the kernel.

Moving the playout bu�er

Figure 9 illustrates how the playout bu�er move-

ments through the �le: �rst, the appliation tells

the sheduler to move the playout point by some

number of bytes. The sheduler then heks if it

should move the playout bu�er (by one or more

pages), and if there is enough redit available

for this. The redit is a measure of how far the

bu�er an be moved at a given time. This on-

ept is desribed in more detail below.

If there is enough redit, the playout bu�er

is moved immediately. Otherwise, the sheduler

sets a timer to expire when enough redit will

have aumulated. When the playout bu�er is

moved, the �rst page in it is dropped,

7

the re-

maining pages are shifted by one position, and

the new page is requested. If a request for this

page is already in progress, the sheduler in-

forms the elevator that the request should now

be proessed with real-time priority (see setion

3.5).

If the playout bu�er has to be moved by sev-

eral pages, the proedure is repeated.

Playout points

The playout bu�er \moves" over the �le by re-

moving pages at its left-hand side, and loading

new pages at its right-hand side. As shown in

�gure 10, the movement is ontrolled by two

playout points: the appliation playout point in-

diates the loation after whih the appliation

7. The playout bu�er, whih is organized as a ring

bu�er, only ontains pointers to the page strutures, so

dropping a page means to release the referene.

Add credit
at rate r

Credit

No

Yes

Yes

than the batching threshold
Playout points differ by more

Set timer when credit
reaches one page

No
Done

T
im

er
 e

xp
ire

s

One page

Credit limit credit >=
one page ?

Load more ?
Reduce credit by one
page and move buffer

Reduce credit

Set timer

Figure 11: Playout bu�er movement is limited by a redit that aumulates at the rate requested by the

appliation, and whih is spent when the playout bu�er advanes through the �le.

will aess the �le ontent. The appliation an

move this playout point at any time and to any

position.

The seond playout point is maintained by the

sheduler in the kernel. It follows the applia-

tion playout point, but always moves forward,

and its average speed does not exeed the re-

quested rate.

If both playout points are on the same mem-

ory page, the playout bu�er stops moving. If

the appliation moves its playout point outside

the playout bu�er, e.g. beause it does a \fast

forward" or beause it exeeds the read rate, it

loses the real-time guarantees, the kernel play-

out point jumps diretly to the loation of the

appliation playout point, and the bu�er is re-

�lled at a best-e�ort priority.

Rate ontrol

The average rate of movement is limited to

the rate the appliation requested: a movement

redit is aumulated at that rate, and whenever

the playout bu�er moves, some of this redit is

spent. If the redit is too small, the sheduler

sets a timer that will expire when the redit is

suÆient to move the playout bu�er by at least

one page. This proess is illustrated in �gure 11.

The redit serves two purposes: (1) it allows

the sheduler to handle time with more auray

than solely relying on timer expiration would,

and (2) it lets the sheduler ompensate for de-

lays between deiding to initiate a series of read

requests, and the moment when these requests

are atually issued.

1 jiffie

Timer latency

Work queue latency

Batch size

1 jiffie

Timer is set

C
re

di
t l

im
it

Maximum delay
between adding
work queue
entry and credit
calculation

Minimum duration
of wait

Maximum delay between
timer tick and addition of
work queue entry

Credit is updated

Figure 12: The limit keeps the sheduler from au-

mulating exessive redit, while allowing it to om-

pensate for the delays ourring when sheduling IO

operations.

Sine redit is aumulated whenever the

playout window is stopped, an arbitrary amount

of redit might be aumulated, and ould then

be used to issue a large number of real-time read

operations, whih would disturb overall system

performane, and make it impossible to usefully

predit delays. Therefore, the maximum redit

must be limited to a reasonable value.

As shown in �gure 12, the redit onsists of

the following parts:

� The redit required before the playout win-

dow moves at all. This is simply the bath

size, as desribed below.

� The auray of timers. Sine the sheduler

always rounds up to the next higher entire

jiÆe, the maximum inauray is the timer

resolution, i.e. one jiÆe.

� The delays between nominal timer expira-

tion and the moment when redit is used to

initiate IO operations. These delays depend

on how the sheduler is implemented, and

inlude { in the urrent design { the time

to at on timer expiration, plus the time

between enqueuing a work queue entry and

the time it gets exeutes.

Appliations may use a similar algorithm to

time their own playout point movements.

Dimensioning the playout bu�er

The playout bu�er maintained by the sheduler

absorbs all deviations from an ideal onstant-

rate ow. In setion 2.6, we have already dis-

ussed the bu�ering requirements determined by

the appliation. They are shown in the upper

part of �gure 13.

8

The lower part of �gure 13 shows the addi-

tional bu�ering needed to ompensate for e�ets

aused by elements under the responsibility of

the operating system:

� A onsiderable amount of time may pass

between the moment, when the sheduler

should feth a new page, and the time when

the request is atually enqueued. In the

urrent implementation, this inludes the

time until the sheduler atually beomes

aware that it should issue a new request,

and, sine we proess playout bu�er move-

ments through a work queue, the time it

takes until the work queue item is pro-

essed.

� The time the request spends in the elevator

(waiting for other requests to omplete

9

),

and then the time it takes for the disk to

proess the request.

Application jitter

Read size or work area

Kernel latency

IO latency

Application−dependent buffering

Operating system and hardware
dependent buffering

Read batching

Figure 13: The playout bu�er of the sheduler pro-

vides for bu�ering needs resulting from appliation

properties and from latenies aused by the operating

system and the hardware.

� Any bathing performed by the sheduler.

Bathing means that the sheduler does not

load eah page immediately when it an,

but waits until a ertain minimum number

of pages needs to be loaded, and then re-

quests them all at one. This way, high-

priority requests interfere less frequently

with lower priority requests, allowing the

latter to bene�t more from the request or-

dering done by the elevator.

When requesting a real-time servie, the ap-

pliation only spei�es its own bu�ering require-

ments. The kernel and the ABISS daemon then

inrease the bu�er size to inlude the additional

bu�ering needed for kernel and hardware.

3.3 API example

Communiation between the appliation and

the ABISS sheduler is done with an iotl. To

request an ABISS servie on a �le, the applia-

tion must �rst open the �le, then �ll in a mes-

sage struture with a sheduler-spei� param-

eter blok, and �nally issue the iotl, as shown

in the following skeleton ode:

stati strut abiss_attah_msg msg;

stati strut abiss_shed_test_prm prm;

fd = open("name", O_RDONLY);

8. For simpliity, we subsume everything related to

non-ideal behaviour under \jitter".

9. This inludes all other requests at real-time priority

earlier in the queue, plus a best-e�ort request that may

be exeuting at that time. On devies with a slow trans-

fer rate, the maximum size limit for requests may have to

be lowered to prevent them from taking too muh time.

msg.header.type = abiss_attah;

msg.shed_prm = &prm;

...

if (iotl(fd, ABISS_IOCTL, &msg) < 0)

/* handle error */;

Typially, the only other hange required is to

update the playout point after reading from the

�le. Again, a message struture is used for this

purpose, as shown in the following ode frag-

ment:

stati strut abiss_position_msg msg;

got = read(fd, buffer, BUFFER_SIZE);

msg.header.type = abiss_position;

msg.pos = 0;

msg.whene = SEEK_CUR;

iotl(fd, ABISS_IOCTL, &msg);

In this example, the playout point it set to the

urrent �le position (alled the �le o�set in [2℄).

There is a also a library providing slightly eas-

ier to use wrapper funtions for these operations.

3.4 Priorities

The mainstream Linux kernel urrently has no

provision for speifying the priority of IO re-

quests. We build partly upon a mehanism for a

proess-based \IO priority" that was proposed

by Jens Axboe a while ago [4℄, and that is poised

to be added to the Linux kernel [5℄.

Unfortunately, it is not possible to pass priori-

ties diretly along with the operations that even-

tually lead to an IO request. Instead, eah pro-

ess or thread has its own \IO priority" whih

applies to all disk IO operations exeuting under

this proess.

ABISS uses real-time priorities only indi-

retly, in the work queue thread that prefethes

pages. We therefore set the IO priority of that

kernel thread to the real-time priority, before it

starts prefething pages, and return it to its pre-

vious value when done.

Independently from this, proesses an set

their own IO priority for any operations not in-

volving ABISS.

3.5 Upgrades

When the sheduler tries to prefeth a page that

has already been requested, that request may be

at a lower priority and may have to be upgraded.

This an happen if the appliation has slightly

exeeded its read rate, and attempted to aess a

page beyond the playout bu�er a moment before

the playout bu�er shifts to over this page, but

also if a di�erent appliation is reading the �le

at non-real-time priority.

When upgrading a page, the sheduler tells

the elevator to look for the request that inludes

the page, and to move that request to the or-

responding higher priority queue. If the request

overs pages with di�erent priorities, the highest

priority is used.

10

3.6 Elevator

The ABISS elevator provides the infrastruture

for enforing IO priorities. Besides implement-

ing priorities, it di�ers in a few other regards

from the regular elevators in the Linux kernel,

i.e. deadline, antiipatory, and CFQ (Complete

Fairness Queuing):

� It reserves spae in the request queue for

high-priority requests, so that they do not

have to ompete for request queue slots on

equal terms with lower-priority requests.

� Barriers are handled in a way that is rela-

tively unobtrusive for read operations. As

a welome side e�et, request ordering se-

mantis also beome more intuitive.

11

� Sine we expet that the ABISS elevator

may be used with omparably large request

queue sizes, it serializes requests before a

barrier at O(p) instead of the O(n) required

by the regular elevators, for p priorities and

n pending requests.

10. This may lead to upgrading a possibly large number

of pages that should not (or not yet) be retrieved at

real-time priority, and might ause the real-time priority

queue to grow suh that other deadlines will be missed.

Sine this extension does not ause long-range seeks, the

impat should normally be low, and the ABISS daemon

an ompensate by slightly enlarging the playout bu�ers

of �les open for real-time reading. On slow disks, one

may also have to adjust the maximum request size.

Doing the opposite, i.e. keeping the request at a lower

priority until all pages have been upgraded, yields even

less preditable e�ets, and is likely to ause more pro-

nouned deadline slips.

The orret solution would be to split this request into

a high and one or two low priority parts. Unfortunately,

this onits somewhat with the design of the elevator

subsystem in the Linux kernel.

Combined requests, as desribed in the following se-

tion, no longer take part in the priority sheme, and are

never upgraded.

11. There is some ontroversy over whether making or-

dering semantis in general more preditable is truly de-

sirable, or whether this is a misguided attempt at imple-

menting semantis that annot be guaranteed in other

senarios anyway. Fortunately, the ABISS elevator an

easily be hanged to implement either behaviour.

The ABISS elevator is mainly meant for ex-

ploring performane and implementation issues

related to prioritized IO, and it urrently does

not aim to o�er balaned performane for om-

plex loads, like the antiipatory or CFQ eleva-

tors do.

In the future, we will try to merge the fun-

tionality of the ABISS elevator that is not spe-

i� to ABISS (that is, almost everything) into

the CFQ elevator.

Enqueuing requests

Figure 14 shows the data strutures in the eleva-

tor. It is divided into two areas, one for reads,

the other for writes and requests with speial

ordering requirements. In eah area, there are

eight priority queues { one for eah priority.

RB tree
by start sector

FIFO queue

LIFO queue

Sort queue

Current

Overlaps
Cursor

Priority queues (8)

Footprint

Areas (2, read and write)

Elevator

Front

Back

Sort 3

2

1

Figure 14: Data strutures in the ABISS elevator.

Regular requests are added to the sort queue,

a linear list, whih is ordered by the start se-

tors of the requests in it. The ordering is

aomplished through a red-blak tree. Re-

quests whih may not be reordered with respet

to other requests are plaed in either a FIFO

queue,

12

or the LIFO queue. Requests that are

requeued by a blok devie are added at the head

of the respetive FIFO queue.

������ ����

No overlap

Overlap

Footprint

Combined (hidden)

����������

�����
�����
�����
����� ����

����
����
����
����

��������
��
��
��
��

Original footprint

O
ld requests

No overlap

Overlap

New request

Combined request

Resulting footprint

Block number

Figure 15: The \footprint" of a request is the range

of setors overed by all the overlapping requests it

is ombined with.

Retrieving requests

When looking for the next request, the LIFO

queue has priority over anything else. If the

LIFO queue is empty, the FIFO queue in the

urrently ative area is searhed.

13

Finally, if

also the FIFO queue was empty, the priority

queues of the urrently ative area are searhed,

from highest to lowest.

When retrieving the next request from a sort

queue, the request pointed to by the so-alled

ursor is taken. The ursor moves from requests

beginning at low setors towards those at higher

setors. When reahing the last request in the

sort queue, it wraps bak to the beginning. This

way, eah priority implements a single-sweep el-

evator.

The elevator alternates between reading and

writing. Eah phase is given a ertain amount

of time.

14

A phase ends if either that amount of

12. Usually, all requests going to a FIFO queue go to

the write area. The only exeption to this are fully over-

lapped read requests, whih, after being retrieved from

the sort queue, go to the FIFO queue of the read area

instead (see below).

13. Exept if the request that was returned last has not

yet been removed from the queue, and no other request

was enqueued in the LIFO queue. This mehanism is

there, beause an elevator must onsistently return the

same \urrent" request until that request is expliitly

removed.

14. At the time of writing, we use 2 seonds for the read

phase, and 30 ms for the write phase.

time has passed, or if there are no more requests

of the orresponding type. The phase hange is

postponed if the other area ontains no requests.

Barrier semantis

Barriers and overlapping requests require speial

treatment. In the regular elevators on Linux,

barriers separate all requests before and after

them, and the elevators give no guarantees with

respet to the ordering of overlapping requests.

While barriers are rarely used, delaying new

requests until all pending requests have been

proessed may ause signi�ant delays also for

higher-priority requests.

Fortunately, it makes no di�erene if we re-

order read requests even aross barriers, as long

as they are not moved beyond write requests

aessing the same disk setors. The ABISS el-

evator therefore honors barriers only for write

requests, and ensures that read requests never

ross write requests whih whom they overlap.

For simpliity, we always avoid reordering write

requests that overlap with other write requests.

This has the added bene�t that data read and

written with the ABISS elevator is exatly the

same as if a simple FIFO was used.

��������������

��
��
��
��

���
���
���
���

������

����
��������

����
����
����
����

Combined request
Original new request

"Head" request

Figure 16: The resulting request ombines all re-

quests overlapping with the original new request.

Overlapping requests

Overlapping requests an only our in om-

bination with operations that bypass the page

ahe, i.e. diret reads and writes by �le system

drivers, or �les opened with O_DIRECT. Overlap-

ping parts of transfers going through the page

ahe only ause disk IO one, and are resolved

within the ahe with FIFO semantis.

New write requests are heked for overlaps

with existing read and write requests, while new

read requests are only heked against existing

write requests. If overlaps are found, all over-

lapping requests are ombined in a list suh that

the existing requests appear in an arbitrary or-

der, followed by the new request. Only the �rst

request of this list is visible in the sort queue and

all the trees. In order to aount for the requests

hidden behind this �rst request, we introdue

the onept of a request's footprint, whih is the

range of setors used when looking for overlaps.

When ombining requests, the footprint of the

�rst request is inreased aordingly. This pro-

edure is illustrated in �gure 15.

15

If any of the overlapping requests are already

ombined requests, all its omponents are added

as individual requests (i.e. there are no om-

bined requests nested inside other ombined re-

quests), but they retain their relative order.

Figure 16 shows a possible result of this op-

eration. Note that the new request that aused

the overlaps is last in the ombined request.

��
��
��
��

����

Sort queue

FIFO queue

First request becomes "current"

Overlapping requests are placed
in the FIFO queue

Figure 17: Combined requests are split when retriev-

ing them.

Overlapping requests are deteted by looking

up the range of setors they over in a radix pri-

ority searh tree maintained at eah area. This

is the dark tree looming in the bakground on

15. We are exerising a little artisti freedom here: the

on�guration in this example ould not our in real life:

Overlapping requests like the two on the left would al-

ways be ombined if they were in a write area, so this

must be a read area. However, in a read area, there

would be no reason to ombine the middle request of the

ombined request.

Requests that over an idential range of setors, like

the �rst and the last request in the ombined request,

would be ombined even in a read area, beause the

searh tree we use annot aommodate idential entries.

Therefore, in that exeptional ase, the ombined request

stays in the read area.

0 100 200 300 400 500 600 700 800 900
delay [ms]

0.1

1

10

100

1000

co

un
ts

0

ABISS - Real Time

0 100 200 300 400 500 600 700 800 900
delay [ms]

0.1
1

10
100

1000
10000

co

un
ts

0

ABISS - Best Effort

0 100 200 300 400 500 600 700 800 900
delay [ms]

0.1
1

10
100

1000
10000

co

un
ts

0 500

Anticipatory

0 5 10
0.1

1

10

100

1000

0 100 200 300 400 500 600 700 800 900
delay [ms]

0.1

1

10

100

1000

co

un
ts

0

Deadline

0 100 200 300 400 500 600 700 800 900
delay [ms]

0.1

1

10

100

1000

co

un
ts

0

CFQ

0 100 200 300 400 500 600 700 800 900
delay [ms]

0.1

1

10

100

1000

co

un
ts

0 500

Noop

Figure 18: Histogram of the time between issuing a read() all and obtaining the data for the ABISS elevator

in RT and BE mode, and for the other Linux elevators. The measurement was done with four real-time

streams reading at 1 MB/s and a ontinuous best-e�ort read of a large �le in the bakground. In the ase

of the real-time ABISS elevator the maximum delay is around 8 ms. The bath size for this measurement

was 20 pages.

�gure 14. After ombining requests, the result is

enqueued in the write area, sine the ombined

request ontains at least one write.

When retrieving a ombined request, the

\head" beomes the next (urrent) request,

while the rest is separated and plaed in the

FIFO queue. This is shown in �gure 17.

The struture of the ABISS elevator also al-

lows barriers to be implemented very eÆiently:

sine they only a�et the write area, it is suf-

�ient to add the ontents of all sort queues to

the FIFO queue, whih is an O(1) operation for

eah queue. Beause this empties all trees in

this area, their elements do not need to be re-

moved individually, but the trees an simply be

initialized to their empty state.

3.7 Known problems

A general and diÆult to solve problem are de-

lays that may appear anywhere along the ode

paths involved in proessing IO requests. In par-

tiular, memory management an trigger sans

for free pages, with a signi�ant run time. Our

urrent work-around is to apply generous bu�er-

ing.

Another (minor) problem of best-e�ort prior-

ities is that requests annot be upgraded, be-

ause ABISS is not partiipating in request gen-

eration.

Real-time reads urrently begin as soon as the

bath size is reahed. This means that the time

intervals for best-e�ort a�orded by these bathes

get fragmented into smaller intervals if there is

more than one real-time reader. This defeats

the purpose of read bathing.

Last but not least, ABISS presently provides

no guarantees for writes. There is experimental

infrastruture in plae that allows ABISS to on-

trol where free spae is alloated, and that also

helps to eliminate meta-data aesses (whih, if

they are reads, may blok).

4 Measurements

In this setion we will ompare the performane

of ABISS to that of the other Linux elevators:

Antiipatory (the default in the Linux 2.6.7 ker-

Elevator Foreground readers Bakground reader [MB/s℄ Playout bu�er

with 1 foreground with 4 foreground

ABISS RT, 10 page bath 7.7 0.27 564 kB

RT, 20 page bath 8.0 2.5 564 kB

RT, 40 page bath 8.7 4.0 564 kB

RT, 80 page bath 9.4 5.8 564 kB

RT, 160 page bath 9.5 6.6 1064 kB

BE 7.7 1.5 |

Antiipatory 7.8 2.7 |

Deadline 7.9 1.8 |

CFQ 7.9 1.8 |

Noop 7.9 2.0 |

Table 1: Data rate obtained by a \bakground" best-e�ort reader against one and four onurrent \fore-

ground" best-e�ort or real-time readers.

nel), Completely Fair Queuing (CFQ), Deadline

and Noop. The measurements were done on a

system with 128 MB of memory, and a Trans-

meta Crusoe TM5800 [6℄ CPU, running at 800

MHz. Two hard disks were onneted to the

system: the primary /dev/hda, ontaining the

boot and system partitions was a 2.5 inh 60

GB hard disk, the seondary hard disk /dev/hd

was a 2.5 inh 20 GB 4200 rpm Hitahi Travel-

star hard disk [7℄, with only one partition.

Two tests were performed in whih one or four

simultaneous streams, reading di�erent 105 MB

�les on the seondary hard disk, were started.

The streams were started with the rdrt tool,

part of the ABISS distribution, whih reads a

ertain �le at a prede�ned data rate. The data

were read in bloks of 64 kB, at a rate of 1 MB/s.

The playout bu�er size was set to 564 kB. The

rdrt tool allows logging the delay between issu-

ing a read ommand and the arrival of the data

in the appliation. In parallel to these real-time

streams, whih we shall all our foreground read-

ers, a bakground best-e�ort read stream on a

�fth large �le was started by running a program

that ontinuously reads a 175 MB �le in hunks

of 128 kB, using fread().

Several measurements were done: one in

whih the ABISS real-time servie was used,

one in whih the ABISS elevator was used, but

only for best-e�ort (default priorities for both

the four foreground streams as well as for the

bakground reader). In the other measurements

the other Linux elevators were used. For the

measurements with the ABISS real-time servie

several bath sizes were tried: 10, 20, 40, 80 and

160 pages (one page is 4 kB).

The results of the measurements with four

real-time streams are shown as a histogram in

�gure 18. For a ertain delay time on the x axis

the number of times this delay ourred is on the

y axis. The results of all four real-time streams

were summed.

The bene�ts of using real-time ABISS an be

learly seen; all delays are smaller than 8 ms

whih means that appliations an do with a

very small bu�er. In the ase of best-e�ort traf-

� the delays that our when reading an be up

to a seond, whih implies for this ase that the

appliations will need a bu�er of at least 1 MB

(and will also inur a lateny to user input of at

least 1 seond). Figure 18 shows the result with

a bath size of 20 pages. In other measurements

sometimes one or two reads were seen with a de-

lay up to 25 ms. These have not been explained

yet.

It is also interesting to see what data rate the

best-e�ort reader ould obtain. These rates are

listed in table 1. It an learly be seen that

the rate is strongly dependent on the bath size.

However, already with a 40 page bath size, the

impat of the real-time readers on the bak-

ground reader is lower than if using the same

number of best-e�ort readers. As expeted, the

other elevators perform better than the ABISS

elevator under a pure best-e�ort load, but still

show degradation well beyond that experiened

with properly tuned ABISS real-time readers.

5 Conlusions and future

work

In this paper we present our work done on real-

time �le I/O on hard disks. The ABISS frame-

work allows for di�erent servies that an be im-

plemented in modules that an be hanged at

run time. In this paper we have shown results

with a performane sheduler and ompared to

results obtained with the standard best-e�ort

way of sheduling I/O. By using ABISS the sys-

tem is able to guarantee a ertain bandwidth to

an appliation, without the need for large mem-

ory bu�ers on the appliation side.

Writing with real-time guarantees is not yet

supported. The main hallenge in writing large

�les is to prevent fragmentation of the �les. For

instane, in the urrent �le systems writing mul-

tiple �les simultaneously will result in relatively

small, interleaved areas on the hard disk. To

irumvent this, work has to be done on the al-

loator, the entity that assigns disk bloks to

�les that are written.

Future work will also inlude di�erent ABISS

servies. For instane, for portable systems

power is very important. An ABISS sheduler

might allow for power management thus extend-

ing the battery life of a portable devie.

Furthermore, sine there is general inter-

est in funtionality to let also the mainstream

kernel di�erentiate IO servies, we will merge

mehanisms that have been suessfully used in

ABISS, and submit them for inlusion into the

2.6 or 2.7 kernel.

Referenes

[1℄ Li, Hong; Cumpson, Stephen R.; Korst, Jan;

Johemsen, Robert; Lambert, Niek. A Sal-

able HDD Video Reording Solution Using

A Real-time File System. IEEE Transations

on Consumer Eletronis, Vol. 49, No. 3,

663{669, 2003.

[2℄ The Open Group Base Spei�ations Issue 6,

IEEE Std 1003.1, 2003 Edition, The IEEE

and The Open Group, 2003. http://www.

opengroup.org/onlinepubs/007904975/

[3℄ Piggin, Nik. Runtime seletable IO shed-

ulers. http://www.kerneltrap.org/

~npiggin/elevator/

[4℄ Axboe, Jens. [PATCH℄ fq + io pri-

orities. Posted on the linux-kernel

mailing list, November 8, 2003.

http://www.uwsg.iu.edu/hypermail/

linux/kernel/0311.1/0019.html

[5℄ Axboe, Jens. Linux Blok IO|present

and future. Proeedings of the Linux Sym-

posium, vol. 1, pp. 51{61, Ottawa, July

2004. http://www.finux.org/Reprints/

Reprint-Axboe-OLS2004.pdf

[6℄ The Transmeta Corporation http:

//www.transmeta.om/rusoe/rusoe_

tm5800_tm5500.html

[7℄ Hitahi Global Storage Tehnologies,

disk model number IC25N020ATMR04,

http://www.hitahigst.om/hdd/

support/80gn/80gn.htm

