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Abstract

Recent Linux kernels offer a wide variety of traffic con-
trol functions, which can be combined in a modular
way. We have designed support for Differentiated Ser-
vices based on the existing traffic control elements, and
we have implemented new components where neces-
sary. In this document we give a brief overview of the
structure of Linux traffic control, and we describe our
prototype implementation in more detail.

1 Introduction

The Differentiated Services architecture (Diffserv; [1])
provides an infrastructure for applications, users, or
providers to select the network service that best suits
their needs. Services may differ in many ways, such as
delay or loss goals.

Diffserv defines local node services in terms of the
forwarding behavior of individual routers (the so-called
Per-Hop-Behavior; PHB). Diffserv defines only PHBs
which can be used to define end-to-end services, how-
ever the actual use of these building blocks to define
end-to-end services is beyond the current scope of the
IETF Diffserv Working Group [2].

When forwarding a packet, a node selects the PHB to
apply based on the content of the Diffserv field (short
“DS field”) in the IP header [3]. This value is called
the Diffserv Code Point (DSCP). Note that each net-
work may decide on its own mapping between DSCP
values and PHBs. Nevertheless, each PHB definition
also proposes a default DSCP value.

The Diffserv design allows PHBs to be defined, im-
plemented, and deployed in a largely independent way.
It is therefore important to preserve this flexibility in
any implementation.

We have developed a design to support basic clas-
sification and DS field manipulation required by Diff-
serv nodes. The design enables configuration of the
first PHBs that are being defined in the Diffserv WG.
We have implemented a prototype of this design us-
ing the traffic control framework available in recent
Linux kernels. The source code, configuration exam-

ples, and related information can be obtained from
http://icawwwl.epfl.ch/linux-diffserv/

The main focus of our work is to allow maximum
flexibility for node configuration and for experiments
with PHBs, while still maintaining a design that does
not unnecessarily sacrifice performance.

This document is structured as follows. Section 2 in-
troduces the concepts of the Diffserv architecture. Sec-
tion 3 gives a brief overview of traffic control functions
in recent Linux kernels. Section 4 discusses where the
existing model needed to be extended. Section 5 de-
scribes the new components in more detail.

2 Differentiated Services

Figure 1 shows the general structure of the forwarding
path in a Diffserv node.
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Figure 1: General Diffserv forwarding path.

Depending on the implementation, marking may also
occur at different places, possibly even several times.

2.1 Classification and metering

Diffserv distinguishes two types of classification: a “be-
havior aggregate classifier” distinguishes packets based
only on their DS fields. A “micro-flow classifier” may
take into account the whole packet, e.g. the source and
destination TP addresses, port numbers, etc.

Classification based on packet contents may also be
supplemented by metering of traffic flows, e.g. in order
to accept only limited traffic for a given PHB.

2.2 Marking

The process of setting or modifying the DS field is
called marking. Marking is necessary in several cases,
for example:



e Whenever a packet from a non-Diffserv network
reaches the edge of a Diffserv network, its DS field
has to be initialized to the appropriate DSCP.

e Diffserv-capable hosts need to be able to set the DS
field of packets they originate.

e Since different parts of a network may use different
DSCP to PHB mappings, edge routers may have to
change the DS field in packets crossing such a bound-
ary.

e A PHB group may use multiple PHBs and hence
multiple DSCPs to convey additional information
(e.g. some form of congestion indication). In this
case, the DS field may change at any Diffserv-capable
node along the path.

2.3 PHBs

Three groups of PHBs are currently being defined in
the Diffserv WG:

e PHBs for compatibility with historical use of the
IPv4 TOS byte (defined in [3])

e Expedited forwarding, a simple high-priority PHB
]

e Assured Forwarding, a group of PHBs with different
delay and drop priorities [5]

3 Linux Traffic Control

Figure 2 shows roughly how the kernel processes data
received from the network, and how it generates new
data to be sent on the network.
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Figure 2: Processing of network data.

“Forwarding” includes the selection of the output in-
terface, the selection of the next hop, encapsulation,
etc. Once all this is done, packets are queued on the re-
spective output interface. This is the point where traf-
fic control comes into play. Traffic control can, among
other things, decide if packets are queued or if they
are dropped (e.g. if the queue has reached some length
limit, or if the traffic exceeds some rate limit), it can
decide in which order packets are sent (e.g. to give
priority to certain flows), it can delay the sending of
packets (e.g. to limit the rate of outbound traffic), etc.

Once traffic control has released a packet for send-
ing, the device driver picks it up and emits it on the
network.

3.1 Components

The traffic control code in the Linux kernel consists of
the following major conceptual components: (1) queu-
ing disciplines; (2) classes (within a queuing discipline);
(3) filters; and (4) policing.

Each network device has a queuing discipline asso-
ciated with it, which controls how packets enqueued
on that device are treated. A very simple queuing dis-
cipline may just consist of a single queue, where all
packets are stored in the order in which they have been
enqueued, and which is emptied as fast as the respec-
tive device can send.

More elaborate queuing disciplines may use filters
to distinguish among different classes of packets and
process each class in a specific way, e.g. by giving one
class priority over other classes.
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Figure 3: A simple queuing discipline with multiple classes.

Figure 3 shows an example of such a queuing disci-
pline. Note that multiple filters may map to the same
class.

Queuing disciplines and classes are intimately tied
together: the presence of classes and their semantics
are fundamental properties of the queuing discipline.
In contrast to that, filters can be combined arbitrarily
with queuing disciplines and classes as long as the queu-
ing discipline has classes to map the packets to. But
flexibility does not end there yet — classes normally do
not take care of storing their packets themselves, but
they use another queuing discipline to take care of that.
That queuing discipline can be arbitrarily chosen from
the set of available queuing disciplines, and it may well
have classes, which in turn use queuing disciplines, etc.
The term qdisc would be used interchangeably to mean
queueing discipline in this draft.

Packets are enqueued as follows: when the enqueue
function of a queuing discipline is called, it scans the fil-
ters until one of them indicates a match to a class iden-
tifier. It then queues the packet for the corresponding
class, which usually means to invoke the enqueue func-
tion of the queuing discipline “owned” by that class.
Packets which do not match any of the filters are typ-
ically attributed to some default class.

Typically, each class “owns” one queue, but it is in
principle also possible that several classes share the
same queue or even that a single queue is used by
all classes of the respective queuing discipline. Note,



however, that packets do not carry any explicit indica-
tion of which class they were attributed to. Queuing
disciplines that change per-class information when de-
queuing packets (e.g. CBQ) will therefore not work
properly if the “inner” queues are shared, unless they
are able either to repeat the classification or to pass the
classification result from enqueue to dequeue by some
other means.

Usually when enqueuing packets, the corresponding
flow(s) can be policed, e.g. by discarding packets which
exceed a certain rate.

4 Diffserv extensions to Linux
traffic control

The traffic control framework available in recent Linux
kernels [6] already offers most of the functionality re-
quired for implementing Diffserv support. We there-
fore closely followed the existing design and added new
components only where it was deemed strictly neces-
sary.

4.1 Overview

The classification result may be used several times in
the Diffserv processing path, and it may also depend on
external factors (e.g. time), so reproducing the classi-
fication result may not only be expensive, but actually
impossible.

We therefore added a new field tc_index to the
packet buffer descriptor (struct sk_buff), where we
store the result of the initial classification. In or-
der to avoid confusing tc_index with the classifier
cls_tcindex, we will call the former skb->tc_index
throughout this document.

skb->tc_index is set using the sch_dsmark queuing
discipline, which is also responsible for initially retriev-
ing the DSCP, and for setting the DS field in packets
before they are sent on the network. sch_dsmark pro-
vides the framework for all other operations.

The cls_tcindex classifier reads all or part of skb->
tc_index and uses this to select classes.

Finally, we need a queuing discipline to support
multiple drop priorities as required for Assured For-
warding. For this, we designed GRED, a general-
ized RED. sch_gred provides a configurable number
of drop priorities which are selected by the lower bits
of skb->tc_index.

4.2 Classification and marking

The classifiers cls rsvp and clsu32 can handle
all micro-flow classification tasks. Additionally, the

ipchains firewall is also capable of tagging microflows
into classes. Behavior aggregate classification could
also be done using cls_u32 and ipchains, but since
we usually already have sch_dsmark at the top level,
we use the simpler cls_tcindex and retrieve the DSCP
using sch_dsmark, which then puts it into skb->tc_
index.

When using sch_dsmark, the class number returned
by the classifier is stored in skb->tc_index. This way,
the result can be re-used during later processing steps.

Nodes in multiple DS domains must also be able to
distinguish packets by the inbound interface in order
to translate the DSCP to the correct PHB. This can
be done using the route classifier, in combination with
the ip rule command interface subset.

Marking is done when a packet is dequeued from
sch_dsmark. sch_dsmark uses skb->tc_index as an
index to a table in which the outbound DSCP is stored
and puts this value into the packet’s DS field.
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Figure 4: Micro-flow classifier.

Figure 4 shows the use of sch_dsmark and skb->
tc_index in a micro-flow classifier based on cls_rsvp.
Figure 5 shows a behavior aggregate classifier using
cls_tcindex.
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Figure 5: Behaviour aggregate classifier.

4.3 Cascaded meters

Multiple meters are needed if traffic should be assigned
to more than two classes, based on the bandwidth it
uses. As an example, such classes could be for “low”,
“high”, and “excess” traffic.

Our current implementation supports a limited form
of cascading at the level of classifiers. We are testing a
cleaner and more efficient solution at the time of writ-
ing.



4.4 Implementing PHBs

PHBs based only on delay priorities, e.g. Expedited
Forwarding [4], can be built using CBQ [7] or the more
simple sch_prio.

Besides four delay priorities, which can again be im-
plemented with already existing components, Assured
Forwarding [5] also needs three drop priorities, which
is more than the current implementation of RED sup-
ports. We therefore added a new queuing discipline
which we call “generalized RED” (GRED). GRED uses
the lower bits of skb->tc_index to select the drop class
and hence the corresponding set of RED parameters.

4.5 Shaping

The so-called Token Bucket Filter (sch_tbf) can be
used for shaping at edge nodes. Unfortunately, the
highest rate at which sch_tbf can shape is limited by
the system timer, which normally ticks at 100 Hz, but
can be accelerated to 1 kHz or more if the processor
is sufficiently powerful. Note that Linux traffic con-
trol supports more granular clocking for droppers (i.e.
shapers without buffer).

CBQ can also be used to do shaping.

Higher rates can be shaped when using hardware-
based solutions, such as ATM.

4.6 End systems

Diffserv-capable sources use the same functionality as
edge routers, i.e. any classification and traffic condi-
tioning can be administratively configured.

In addition to that, an application may also choose
to mark packets when they are generated. For IPv4,
this can be done using the IP_T0S socket option, which
is commonly available on Unix, and of course also on
Linux. Note that Linux follows the [8] convention of not
allowing the lowest bit of the TOS byte to be different
from zero. This restriction is compatible with use for
Diffserv. Furthermore, the use of values corresponding
to high precedences (i.e. DSCP 0x28 and above) is
restricted. This can be avoided either by giving the
application the appropriate capabilities (privileges), or
by re-marking (see below).

Setting the DS field with IPv6 is currently very awk-
ward. In the future, an improved interface is likely to
be provided that unifies the IPv4 and IPv6 usage and
that may contain additional improvements, e.g. selec-
tion of services instead of “raw” DS field values.

An application’s choice of DS field values can al-
ways be refused or changed by traffic control (using
re-marking) before a packet actually reaches the net-
work.

5 New components

The prototype implementation of Diffserv support re-
quires the addition of three new traffic control elements
to the kernel: (1) the queuing discipline sch_dsmark
to extract and to set the DSCP, (2) the classifier
cls_tcindex which uses this information, and (3) the
queuing discipline sch_gred which supports multiple
drop priorities and buffer sharing.

Only the queueing discipline to extract and set the
DSCP is truly specific to the differentiated services ar-
chitecture. The other two elements can also be used in
other contexts.

Figure 4 shows the use of sch_dsmark for the initial
packet marking when entering a Diffserv domain. The
classification and rate control metering is performed by
a micro-flow classifier, e.g. cls_rsvp, in this case.

This classifier determines the initial TC index which
is then stored in skb->tc_index. Afterwards, further
processing is performed by an inner queuing discipline.
Note that this queuing discipline may read and even
change skb->tc_index.

When a packet leaves sch_dsmark, skb->tc_index
is examined and the DS field of the packet is set ac-
cordingly.

Figure 5 shows the wuse of sch.dsmark and
cls_tcindex in a node which works on a behavior ag-
gregate, i.e. on packets with the DS field already set.
The procedure is quite similar to the previous scenario,
with the exception that cls_tcindex takes over the
role of cls_rsvp and that the DS field of the incom-
ing packet is copied to tc_index before invoking the
classifier.

Note that the value of the outbound DS field can be
affected at three locations: (1) in sch_dsmark, when
classifying based on skb->tc_index, which contains
the original value of the DS field; (2) by changing skb->
tc_index in an inner queuing discipline; and (3) in
sch dsmark, when mapping the final value of skb->
tc_index back to a new value of the DS field.

5.1 sch._dsmark

As illustrated in figure 6, the sch_dsmark queuing dis-
cipline performs three actions based on the scripting
invocation:

o If set_tc_index is set, it retrieves the content of the
DS field and stores it in skb->tc_index.

e It invokes a classifier and stores the class ID re-
turned in skb->tc_index. If the classifier finds
no match, the value of default_index is used in-
stead. If default_index is not set, the value of
skb->tc_index is not changed. Note that this can



yield undefined behaviour if neither set_tc_index
nor default_index is set.

e After sending the packet through its inner queuing
discipline, it uses the resulting value of skb->tc_
index as an index into a table of (mask,value) pairs.
The original value of the DS field is then replaced
using the following formula:
ds_field = (ds_field & mask) | value

5.2 cls_tcindex

As shown in figure 7, the cls_tcindex classifier uses
skb->tc_index to select classes. It first calculates the
lookup key using the algorithm

key = (skb->tc_index >> shift) & mask

Then it looks for an entry with this handle. If an entry
is found, it may call a meter (if configured), and it will
return the class IDs of the corresponding class.

If no entry is found, the result depends on whether
fall_through is set. If set, a class ID is constructed
from the lookup key. Otherwise, it returns a “not
found” indication and the search continues with the
next classifier. We call construction of the class ID
an “algorithmic mapping”. This can be used to avoid
setting up a large number of classifier elements if
there is a sufficiently simple relation between values
of skb->tc_index and class IDs. An example of this
trick is used in the AF scripts on the web site.

The size of the lookup table can be set using the hash
option. cls_tcindex automatically uses perfect hash-
ing if the range of possible choices does not exceed the
size of the lookup table. If the hash option is omitted,
an implementation-dependent default value is chosen.
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Figure 7: The tcindex classifier.
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5.3 sch_gred

Figure 8 shows how sch_gred uses skb->tc_index for
the selection of the right virtual queue (VQ) within a
physical queue. What makes sch_gred different from
other Multi-RED implementations is the fact that it
is decoupled from any one specific block along the
packet’s path such as a header classifier or meter. For
example, CISCO’s DWRED [9] is tied to mapping VQ
selection based on the precedence bits classification.
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Figure 8: Generic RED and the use of skb->tc_index

On the other hand, RIO [10] is tied to the IN/OUT
metering levels for the selection of the VQ. In the case
of GRED, any classifier, meter, etc. along the data
path can affect the selection of the VQ by setting the
appropriate value of skb->tc_index.

GRED also differs from the two mentioned multiple
RED mechanisms in that it is not limited to a specific
number of VQ. The number of VQs is configurable for
each physical class queue. GRED does not assume cer-
tain drop precedences (or priorities). It depends on
the configuration parameters passed on by the user. In
essence, DWRED and RIO are special cases of GRED.

Currently, the number of virtual queues is limited
to 16 (the least significant 4 bits of skb->tc_index).
There is a one to one mapping between the values
of skb->tc_index and the virtual queue number in a
class. Buffer sharing is achieved using one of two ways
(selectable via configuration):

¢ Simple setting of physical queue limits. It is up to
the individual configuring the virtual queues param-
eters to decide which one gets preferential treatment.
Sharing and preferential treatment amongst virtual
queues is based on parameter settings such as the
per-virtual queue physical limit, threshold values and
drop probabilities. This is the default setting.

e A similar average queue trick as that is used in [10].
This is selected by the operator grio during the
setup. Each VQ within a class is assigned a pri-
ority at configuration time. Priorities range from
1 to 16 at the moment, with 1 being the highest.
The computation of the average queue value (for a
VQ) involves first summing to the current stored av-
erage queue value all the the other average queue
values of the VQs which are more important than it.
This way a relatively higher priority (lower priority
value) gets preferential treatment because its average
queue is always the lowest; the relatively lower pri-
ority will still continue to send when the higher ones
are not dominating the buffer space. A user can still
configure the per-virtual-Queue physical queue lim-
its, threshold values, and drop probabilities as in the
(first) case when the grio option is not defined.

The second scheme is slightly slower than the first
one (a few more per-packet computations).
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GRED is configured in two steps. First the generic
parameters are configured to select the number of vir-
tual queues DPs and whether to turn on the RIO-like
buffer sharing scheme (grio). Also at this point, a
default virtual queue is selected so that packets with
out of range values of skb->tc_index or misconfigured
priorities in the case of grio buffer-sharing setup are
directed to it. Normally, the default virtual queue is
the one with the highest likelihood of having a packet
discarded. The operator setup identifies that this is a
generic setup for GRED.

The second step is to set parameters for individual
virtual queues. These parameters are equivalent to the
traditional RED parameters. In addition, each RED
configuration identifies which virtual queue the param-
eters belong to as well as the priority if the grio tech-
nique is selected. The mandatory parameters are:

e 1limit defines the virtual queue “physical” limit in
bytes.

min defines the minimum threshold value in bytes.
max defines the maximum threshold value in bytes.
avpkt is the average packet size in bytes.
bandwidth is the wire-speed of the interface.

burst is the number of average-sized packets allowed
to burst. The Linux RED implementation attempts
to compute an optimal W value for the user based
on the avpkt, minimum threshold and allowed burst
size. This is based on the equation: burst + 1 —

g;ﬁ <(1-(1- W)burSt)/W as described in [11].

e probability defines the drop probability in the
range [0...).

o DP identifies the virtual queue assigned to these pa-
rameters.

e prio identifies the virtual queue priority if grio was
set in the general parameters.

6 Conclusion

We have given a brief introduction to the Diffserv archi-
tecture and to the elements of Linux traffic control in
general, and we have explained how the existing infras-
tructure can be extended in order to support Diffserv.

We have then shown how we implemented support for
the Diffserv architecture in Linux, using the traffic con-
trol framework of recent kernels.

Our implementation provides a very flexible platform
for experiments with PHBs already under standardiza-
tion as well as experiments with new PHBs. It can
also serve as a platform for work in other areas of Diff-
serv, such as edge configuration management and pol-
icy management.

Future work will focus on the elimination of a few
restrictions that still exist in our architecture, and also
in the simplification of the configuration procedures.
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